IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0046887.html
   My bibliography  Save this article

Insights into Pancreatic Cancer Etiology from Pathway Analysis of Genome-Wide Association Study Data

Author

Listed:
  • Peng Wei
  • Hongwei Tang
  • Donghui Li

Abstract

Background: Pancreatic cancer is the fourth leading cause of cancer death in the U.S. and the etiology of this highly lethal disease has not been well defined. To identify genetic susceptibility factors for pancreatic cancer, we conducted pathway analysis of genome-wide association study (GWAS) data in 3,141 pancreatic cancer patients and 3,367 controls with European ancestry. Methods: Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways identified from the Kyoto Encyclopedia of Genes and Genomes database. We used the logistic kernel machine (LKM) test to identify major contributing genes to each pathway. We conducted functional enrichment analysis of the most significant genes (P

Suggested Citation

  • Peng Wei & Hongwei Tang & Donghui Li, 2012. "Insights into Pancreatic Cancer Etiology from Pathway Analysis of Genome-Wide Association Study Data," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-10, October.
  • Handle: RePEc:plo:pone00:0046887
    DOI: 10.1371/journal.pone.0046887
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046887
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0046887&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0046887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gordon Fehringer & Geoffrey Liu & Laurent Briollais & Paul Brennan & Christopher I Amos & Margaret R Spitz & Heike Bickeböller & H Erich Wichmann & Angela Risch & Rayjean J Hung, 2012. "Comparison of Pathway Analysis Approaches Using Lung Cancer GWAS Data Sets," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    2. Eric E. Schadt, 2009. "Molecular networks as sensors and drivers of common human diseases," Nature, Nature, vol. 461(7261), pages 218-223, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pi-Jing Wei & Di Zhang & Hai-Tao Li & Junfeng Xia & Chun-Hou Zheng, 2017. "DriverFinder: A Gene Length-Based Network Method to Identify Cancer Driver Genes," Complexity, Hindawi, vol. 2017, pages 1-10, August.
    2. Xue Jiang & Han Zhang & Xiongwen Quan & Zhandong Liu & Yanbin Yin, 2017. "Disease-related gene module detection based on a multi-label propagation clustering algorithm," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    3. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    4. Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    5. Susan Dina Ghiassian & Jörg Menche & Albert-László Barabási, 2015. "A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
    6. Valur Emilsson & Elias F. Gudmundsson & Thorarinn Jonmundsson & Brynjolfur G. Jonsson & Michael Twarog & Valborg Gudmundsdottir & Zhiguang Li & Nancy Finkel & Stephen Poor & Xin Liu & Robert Esterberg, 2022. "A proteogenomic signature of age-related macular degeneration in blood," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Guiqiong Xu & Chen Dong & Lei Meng, 2022. "Research on the Collaborative Innovation Relationship of Artificial Intelligence Technology in Yangtze River Delta of China: A Complex Network Perspective," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    8. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.
    9. Calvin McCarter & Judie Howrylak & Seyoung Kim, 2020. "Learning gene networks underlying clinical phenotypes using SNP perturbation," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-24, October.
    10. Frank Emmert-Streib & Galina V Glazko, 2011. "Pathway Analysis of Expression Data: Deciphering Functional Building Blocks of Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-6, May.
    11. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Andrea Pinna & Nicola Soranzo & Alberto de la Fuente, 2010. "From Knockouts to Networks: Establishing Direct Cause-Effect Relationships through Graph Analysis," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-8, October.
    13. Albert Rosenberger & Melanie Sohns & Stefanie Friedrichs & Rayjean J Hung & Gord Fehringer & John McLaughlin & Christopher I Amos & Paul Brennan & Angela Risch & Irene Brüske & Neil E Caporaso & Maria, 2017. "Gene-set meta-analysis of lung cancer identifies pathway related to systemic lupus erythematosus," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    14. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    15. Lingfei Wang & Tom Michoel, 2017. "Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-26, August.
    16. Eric P Xing & Ross E Curtis & Georg Schoenherr & Seunghak Lee & Junming Yin & Kriti Puniyani & Wei Wu & Peter Kinnaird, 2014. "GWAS in a Box: Statistical and Visual Analytics of Structured Associations via GenAMap," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-19, June.
    17. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    18. Alexander Gudjonsson & Valborg Gudmundsdottir & Gisli T. Axelsson & Elias F. Gudmundsson & Brynjolfur G. Jonsson & Lenore J. Launer & John R. Lamb & Lori L. Jennings & Thor Aspelund & Valur Emilsson &, 2022. "A genome-wide association study of serum proteins reveals shared loci with common diseases," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Luis P Fernandes & Alessia Annibale & Jens Kleinjung & Anthony C C Coolen & Franca Fraternali, 2010. "Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-14, August.
    20. Darcy A Davis & Nitesh V Chawla, 2011. "Exploring and Exploiting Disease Interactions from Multi-Relational Gene and Phenotype Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0046887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.