IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0044066.html
   My bibliography  Save this article

Cigarette Smoking Decreases Global MicroRNA Expression in Human Alveolar Macrophages

Author

Listed:
  • Joel W Graff
  • Linda S Powers
  • Anne M Dickson
  • Jongkwang Kim
  • Anna C Reisetter
  • Ihab H Hassan
  • Karol Kremens
  • Thomas J Gross
  • Mary E Wilson
  • Martha M Monick

Abstract

Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs) could control, in part, the unique messenger RNA (mRNA) expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory) and M2 (anti-inflammatory) polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an “inverse” M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages.

Suggested Citation

  • Joel W Graff & Linda S Powers & Anne M Dickson & Jongkwang Kim & Anna C Reisetter & Ihab H Hassan & Karol Kremens & Thomas J Gross & Mary E Wilson & Martha M Monick, 2012. "Cigarette Smoking Decreases Global MicroRNA Expression in Human Alveolar Macrophages," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0044066
    DOI: 10.1371/journal.pone.0044066
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044066
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0044066&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0044066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lee P. Lim & Nelson C. Lau & Philip Garrett-Engele & Andrew Grimson & Janell M. Schelter & John Castle & David P. Bartel & Peter S. Linsley & Jason M. Johnson, 2005. "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs," Nature, Nature, vol. 433(7027), pages 769-773, February.
    2. Huili Guo & Nicholas T. Ingolia & Jonathan S. Weissman & David P. Bartel, 2010. "Mammalian microRNAs predominantly act to decrease target mRNA levels," Nature, Nature, vol. 466(7308), pages 835-840, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urmo Võsa & Tõnu Esko & Silva Kasela & Tarmo Annilo, 2015. "Altered Gene Expression Associated with microRNA Binding Site Polymorphisms," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    2. Evelyn Zacharewicz & Paul Della Gatta & John Reynolds & Andrew Garnham & Tamsyn Crowley & Aaron P Russell & Séverine Lamon, 2014. "Identification of MicroRNAs Linked to Regulators of Muscle Protein Synthesis and Regeneration in Young and Old Skeletal Muscle," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-25, December.
    3. Charlotte A. Cialek & Gabriel Galindo & Tatsuya Morisaki & Ning Zhao & Taiowa A. Montgomery & Timothy J. Stasevich, 2022. "Imaging translational control by Argonaute with single-molecule resolution in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Mary P. LaPierre & Katherine Lawler & Svenja Godbersen & I. Sadaf Farooqi & Markus Stoffel, 2022. "MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Panagiotis Alexiou & Manolis Maragkakis & Giorgio L Papadopoulos & Victor A Simmosis & Lin Zhang & Artemis G Hatzigeorgiou, 2010. "The DIANA-mirExTra Web Server: From Gene Expression Data to MicroRNA Function," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-7, February.
    6. Laura Ann Jacobs & Findlay Bewicke-Copley & Mark Graham Poolman & Ryan Charles Pink & Laura Ann Mulcahy & Isabel Baker & Ellie-May Beaman & Travis Brooks & Daniel Paul Caley & William Cowling & James , 2013. "Meta-Analysis Using a Novel Database, miRStress, Reveals miRNAs That Are Frequently Associated with the Radiation and Hypoxia Stress-Responses," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    7. Chen-Ching Lin & Ramkrishna Mitra & Zhongming Zhao, 2014. "A Tri-Component Conservation Strategy Reveals Highly Confident MicroRNA-mRNA Interactions and Evolution of MicroRNA Regulatory Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    8. Wenjie Zhu & Binghe Xu, 2014. "MicroRNA-21 Identified as Predictor of Cancer Outcome: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-7, August.
    9. Weina Xu & Jinyi Liu & Huan Qi & Ruolin Si & Zhiguang Zhao & Zhiju Tao & Yuchuan Bai & Shipeng Hu & Xiaohan Sun & Yulin Cong & Haoye Zhang & Duchangjiang Fan & Long Xiao & Yangyang Wang & Yongbin Li &, 2024. "A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    10. Ho Thi Bich Phuong & Vien Ngoc Thach & Luong Hoang Ngan & Le Thi Truc Linh, 2018. "Using Bioinformatics to predict potential targets of Microrna-144 in osteoarthritis," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 8(1), pages 43-52.
    11. Rachel A Hillmer, 2015. "Systems Biology for Biologists," PLOS Pathogens, Public Library of Science, vol. 11(5), pages 1-6, May.
    12. Ran Elkon & Reuven Agami, 2008. "Removal of AU Bias from Microarray mRNA Expression Data Enhances Computational Identification of Active MicroRNAs," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-10, October.
    13. Ray M Marín & Jiří Vaníček, 2012. "Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    14. Agnieszka Boroń & Małgorzata Śmiarowska & Anna Grzywacz & Krzysztof Chmielowiec & Jolanta Chmielowiec & Jolanta Masiak & Tomasz Pawłowski & Dariusz Larysz & Andrzej Ciechanowicz, 2022. "Association of Polymorphism within the Putative miRNA Target Site in the 3′UTR Region of the DRD2 Gene with Neuroticism in Patients with Substance Use Disorder," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    15. Youjia Hua & Shiwei Duan & Andrea E Murmann & Niels Larsen & Jørgen Kjems & Anders H Lund & Marcus E Peter, 2011. "miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-16, October.
    16. Yasemin Oztemur & Tufan Bekmez & Alp Aydos & Isik G Yulug & Betul Bozkurt & Bala Gur Dedeoglu, 2015. "A Ranking-Based Meta-Analysis Reveals Let-7 Family as a Meta-Signature for Grade Classification in Breast Cancer," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    17. Hotaka Kobayashi & Robert H. Singer, 2022. "Single-molecule imaging of microRNA-mediated gene silencing in cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Catherine Mooney & Rana Raoof & Hany El-Naggar & Amaya Sanz-Rodriguez & Eva M Jimenez-Mateos & David C Henshall, 2015. "High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0044066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.