IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0040329.html
   My bibliography  Save this article

Huntingtin Fragments and SOD1 Mutants Form Soluble Oligomers in the Cell

Author

Listed:
  • Yang-Nim Park
  • Xiaohong Zhao
  • Mark Norton
  • J Paul Taylor
  • Evan Eisenberg
  • Lois E Greene

Abstract

Diffusion coefficients of huntingtin (Htt) fragments and SOD1 mutants expressed in cells were measured using fluorescence correlation spectroscopy. The diffusion mobilities of both non-pathological Htt fragments (25 polyQs) and pathological Htt fragments (103 polyQs) were much slower than expected for monomers suggesting that they oligomerize. The mobility of these fragments was unaffected by duration of expression or by over-expression of Hsp70 and Hsp40. However in cells with HttQ103 inclusions, diffusion measurements showed that the residual cytosolic HttQ103 was monomeric. These results suggest that both non-pathological and pathological Htt fragments form soluble oligomers in the cytosol with the properties of the oligomers determining whether they cause pathology. SOD1 with point mutations (A4V, G37R, and G85R) also had slower diffusional mobility than the wild-type protein whose mobility was consistent with that of a dimer. However, the decrease in mobility of the different SOD1 mutantsdid not correlate with their known pathology. Therefore, while soluble oligomers always seem to be present under conditions where cell pathology occurs, the presence of the oligomers, in itself, does not determine the extent of neuropathology.

Suggested Citation

  • Yang-Nim Park & Xiaohong Zhao & Mark Norton & J Paul Taylor & Evan Eisenberg & Lois E Greene, 2012. "Huntingtin Fragments and SOD1 Mutants Form Soluble Oligomers in the Cell," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-12, June.
  • Handle: RePEc:plo:pone00:0040329
    DOI: 10.1371/journal.pone.0040329
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040329
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040329&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0040329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Montserrat Arrasate & Siddhartha Mitra & Erik S. Schweitzer & Mark R. Segal & Steven Finkbeiner, 2004. "Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death," Nature, Nature, vol. 431(7010), pages 805-810, October.
    2. Qi Wang & Joshua L Johnson & Nathalie YR Agar & Jeffrey N Agar, 2008. "Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival," PLOS Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Bankanidhi Sahoo & Irene Arduini & Kenneth W Drombosky & Ravindra Kodali & Laurie H Sanders & J Timothy Greenamyre & Ronald Wetzel, 2016. "Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-22, June.
    3. Neeraj Pandey & Mark T Fahey & Yuh-Jiin I Jong & Karen L O'Malley, 2012. "Sequences Located within the N-Terminus of the PD-Linked LRRK2 Lead to Increased Aggregation and Attenuation of 6-Hydroxydopamine-Induced Cell Death," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    4. Aaron M Streets & Yannick Sourigues & Ron R Kopito & Ronald Melki & Stephen R Quake, 2013. "Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
    5. Khalid A. Ibrahim & Kristin S. Grußmayer & Nathan Riguet & Lely Feletti & Hilal A. Lashuel & Aleksandra Radenovic, 2023. "Label-free identification of protein aggregates using deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Qi Wang & Joshua L Johnson & Nathalie YR Agar & Jeffrey N Agar, 2008. "Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival," PLOS Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    7. H. F. Fisher & R. J. Boys & C. S. Gillespie & C. J. Proctor & A. Golightly, 2022. "Parameter inference for a stochastic kinetic model of expanded polyglutamine proteins," Biometrics, The International Biometric Society, vol. 78(3), pages 1195-1208, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0040329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.