IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37706-3.html
   My bibliography  Save this article

Artificial Hsp104-mediated systems for re-localizing protein aggregates

Author

Listed:
  • Arthur Fischbach

    (University of Gothenburg
    Max Planck Institute for Biology of Ageing)

  • Angela Johns

    (University of Gothenburg)

  • Kara L. Schneider

    (University of Gothenburg)

  • Xinxin Hao

    (University of Gothenburg)

  • Peter Tessarz

    (Max Planck Institute for Biology of Ageing
    Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD))

  • Thomas Nyström

    (University of Gothenburg)

Abstract

Spatial Protein Quality Control (sPQC) sequesters misfolded proteins into specific, organelle-associated inclusions within the cell to control their toxicity. To approach the role of sPQC in cellular fitness, neurodegenerative diseases and aging, we report on the construction of Hsp100-based systems in budding yeast cells, which can artificially target protein aggregates to non-canonical locations. We demonstrate that aggregates of mutant huntingtin (mHtt), the disease-causing agent of Huntington’s disease can be artificially targeted to daughter cells as well as to eisosomes and endosomes with this approach. We find that the artificial removal of mHtt inclusions from mother cells protects them from cell death suggesting that even large mHtt inclusions may be cytotoxic, a trait that has been widely debated. In contrast, removing inclusions of endogenous age-associated misfolded proteins does not significantly affect the lifespan of mother cells. We demonstrate also that this approach is able to manipulate mHtt inclusion formation in human cells and has the potential to be useful as an alternative, complementary approach to study the role of sPQC, for example in aging and neurodegenerative disease.

Suggested Citation

  • Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37706-3
    DOI: 10.1038/s41467-023-37706-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37706-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37706-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jörg Votteler & Cassandra Ogohara & Sue Yi & Yang Hsia & Una Nattermann & David M. Belnap & Neil P. King & Wesley I. Sundquist, 2016. "Designed proteins induce the formation of nanocage-containing extracellular vesicles," Nature, Nature, vol. 540(7632), pages 292-295, December.
    2. Steven M. Banik & Kayvon Pedram & Simon Wisnovsky & Green Ahn & Nicholas M. Riley & Carolyn R. Bertozzi, 2020. "Lysosome-targeting chimaeras for degradation of extracellular proteins," Nature, Nature, vol. 584(7820), pages 291-297, August.
    3. Chi-ting Ho & Tomas Grousl & Oren Shatz & Areeb Jawed & Carmen Ruger-Herreros & Marije Semmelink & Regina Zahn & Karsten Richter & Bernd Bukau & Axel Mogk, 2019. "Cellular sequestrases maintain basal Hsp70 capacity ensuring balanced proteostasis," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    4. Daniel Kaganovich & Ron Kopito & Judith Frydman, 2008. "Misfolded proteins partition between two distinct quality control compartments," Nature, Nature, vol. 454(7208), pages 1088-1095, August.
    5. Udhayabhaskar Sathyanarayanan & Marina Musa & Peter Bou Dib & Nuno Raimundo & Ira Milosevic & Anita Krisko, 2020. "ATP hydrolysis by yeast Hsp104 determines protein aggregate dissolution and size in vivo," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    6. Christopher M. Dobson, 2003. "Protein folding and misfolding," Nature, Nature, vol. 426(6968), pages 884-890, December.
    7. Jan Vijg & Judith Campisi, 2008. "Puzzles, promises and a cure for ageing," Nature, Nature, vol. 454(7208), pages 1065-1071, August.
    8. Udhayabhaskar Sathyanarayanan & Marina Musa & Peter Bou Dib & Nuno Raimundo & Ira Milosevic & Anita Krisko, 2020. "Author Correction: ATP hydrolysis by yeast Hsp104 determines protein aggregate dissolution and size in vivo," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    9. Matt Kaeberlein, 2010. "Lessons on longevity from budding yeast," Nature, Nature, vol. 464(7288), pages 513-519, March.
    10. Rahul S. Samant & Christine M. Livingston & Emily M. Sontag & Judith Frydman, 2018. "Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control," Nature, Nature, vol. 563(7731), pages 407-411, November.
    11. Montserrat Arrasate & Siddhartha Mitra & Erik S. Schweitzer & Mark R. Segal & Steven Finkbeiner, 2004. "Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death," Nature, Nature, vol. 431(7010), pages 805-810, October.
    12. Matt Kaeberlein, 2010. "Erratum: Lessons on longevity from budding yeast," Nature, Nature, vol. 464(7293), pages 1390-1390, April.
    13. Ilija Melentijevic & Marton L. Toth & Meghan L. Arnold & Ryan J. Guasp & Girish Harinath & Ken C. Nguyen & Daniel Taub & J. Alex Parker & Christian Neri & Christopher V. Gabel & David H. Hall & Monica, 2017. "C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress," Nature, Nature, vol. 542(7641), pages 367-371, February.
    14. Linhao Ruan & Chuankai Zhou & Erli Jin & Andrei Kucharavy & Ying Zhang & Zhihui Wen & Laurence Florens & Rong Li, 2017. "Cytosolic proteostasis through importing of misfolded proteins into mitochondria," Nature, Nature, vol. 543(7645), pages 443-446, March.
    15. Won-Ki Huh & James V. Falvo & Luke C. Gerke & Adam S. Carroll & Russell W. Howson & Jonathan S. Weissman & Erin K. O'Shea, 2003. "Global analysis of protein localization in budding yeast," Nature, Nature, vol. 425(6959), pages 686-691, October.
    16. Adam L. Hughes & Daniel E. Gottschling, 2012. "An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast," Nature, Nature, vol. 492(7428), pages 261-265, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arun Kumar & Veena Mathew & Peter C. Stirling, 2024. "Dynamics of DNA damage-induced nuclear inclusions are regulated by SUMOylation of Btn2," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Qi Wang & Joshua L Johnson & Nathalie YR Agar & Jeffrey N Agar, 2008. "Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival," PLOS Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    3. Louis-François Handfield & Yolanda T Chong & Jibril Simmons & Brenda J Andrews & Alan M Moses, 2013. "Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    4. Maya Dinur-Mills & Merav Tal & Ophry Pines, 2008. "Dual Targeted Mitochondrial Proteins Are Characterized by Lower MTS Parameters and Total Net Charge," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-8, May.
    5. Qiang Zhu & Matthew E. Combs & Juan Liu & Xue Bai & Wenbo B. Wang & Laura E. Herring & Jiandong Liu & Jason W. Locasale & Dawn E. Bowles & Ryan T. Gross & Michelle Mendiola Pla & Christopher P. Mack &, 2023. "GRAF1 integrates PINK1-Parkin signaling and actin dynamics to mediate cardiac mitochondrial homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Verena Kohler & Andreas Kohler & Lisa Larsson Berglund & Xinxin Hao & Sarah Gersing & Axel Imhof & Thomas Nyström & Johanna L. Höög & Martin Ott & Claes Andréasson & Sabrina Büttner, 2024. "Nuclear Hsp104 safeguards the dormant translation machinery during quiescence," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Jian Cui & Jinghua Liu & Yuhua Li & Tieliu Shi, 2011. "Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-16, January.
    8. Jian Tian & Jaie C Woodard & Anna Whitney & Eugene I Shakhnovich, 2015. "Thermal Stabilization of Dihydrofolate Reductase Using Monte Carlo Unfolding Simulations and Its Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-27, April.
    9. Xiaomei Wu & Erli Pang & Kui Lin & Zhen-Ming Pei, 2013. "Improving the Measurement of Semantic Similarity between Gene Ontology Terms and Gene Products: Insights from an Edge- and IC-Based Hybrid Method," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    10. Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Pascale Baden & Maria Jose Perez & Hariam Raji & Federico Bertoli & Stefanie Kalb & María Illescas & Fokion Spanos & Claudio Giuliano & Alessandra Maria Calogero & Marvin Oldrati & Hannah Hebestreit &, 2023. "Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    12. Eri Chatani & Yutaro Tsuchisaka & Yuki Masuda & Roumiana Tsenkova, 2014. "Water Molecular System Dynamics Associated with Amyloidogenic Nucleation as Revealed by Real Time Near Infrared Spectroscopy and Aquaphotomics," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    13. Michelle Lindström & Lihua Chen & Shan Jiang & Dan Zhang & Yuan Gao & Ju Zheng & Xinxin Hao & Xiaoxue Yang & Arpitha Kabbinale & Johannes Thoma & Lisa C. Metzger & Deyuan Y. Zhang & Xuefeng Zhu & Huis, 2022. "Lsm7 phase-separated condensates trigger stress granule formation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Sibiao Yue & Lei Wang & George N. DeMartino & FangZhou Zhao & Yi Liu & Matthew H. Sieber, 2022. "Highly conserved shifts in ubiquitin-proteasome system (UPS) activity drive mitochondrial remodeling during quiescence," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Meghan Lee Arnold & Jason Cooper & Rebecca Androwski & Sohil Ardeshna & Ilija Melentijevic & Joelle Smart & Ryan J. Guasp & Ken C. Q. Nguyen & Ge Bai & David H. Hall & Barth D. Grant & Monica Driscoll, 2023. "Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Khalid A. Ibrahim & Kristin S. Grußmayer & Nathan Riguet & Lely Feletti & Hilal A. Lashuel & Aleksandra Radenovic, 2023. "Label-free identification of protein aggregates using deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Alex N Nguyen Ba & Bob Strome & Jun Jie Hua & Jonathan Desmond & Isabelle Gagnon-Arsenault & Eric L Weiss & Christian R Landry & Alan M Moses, 2014. "Detecting Functional Divergence after Gene Duplication through Evolutionary Changes in Posttranslational Regulatory Sequences," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-15, December.
    18. Matías Quer, 2020. "Fear of Death as the Foundation of Modern Political Philosophy and Its Overcoming by Transhumanism," Postmodern Openings, Editura Lumen, Department of Economics, vol. 11(4), pages 323-333, December.
    19. Stefan Auer & Filip Meersman & Christopher M Dobson & Michele Vendruscolo, 2008. "A Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric Aggregates," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-7, November.
    20. Espinoza Ortiz, J.S. & Dias, Cristiano L., 2018. "Cooperative fibril model: Native, amyloid-like fibril and unfolded states of proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 154-165.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37706-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.