IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0001156.html
   My bibliography  Save this article

Epistatic Interactions Alter Dynamics of Multilocus Gene-for-Gene Coevolution

Author

Listed:
  • Andy Fenton
  • Michael A Brockhurst

Abstract

Fitness costs associated with resistance or virulence genes are thought to play a key role in determining the dynamics of gene-for-gene (GFG) host-parasite coevolution. However, the nature of interactions between fitness effects of multiple resistance or virulence genes (epistasis) has received less attention. To examine effects of the functional form of epistasis on the dynamics of GFG host-parasite coevolution we modified a classic multilocus GFG model framework. We show that the type of epistasis between virulence genes largely determines coevolutionary dynamics, and that coevolutionary fluctuations are more likely with acceleratingly costly (negative) than with linear or deceleratingly costly (positive) epistasis. Our results demonstrate that the specific forms of interaction between multiple resistance or virulence genes are a crucial determinant of host-parasite coevolutionary dynamics.

Suggested Citation

  • Andy Fenton & Michael A Brockhurst, 2007. "Epistatic Interactions Alter Dynamics of Multilocus Gene-for-Gene Coevolution," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-6, November.
  • Handle: RePEc:plo:pone00:0001156
    DOI: 10.1371/journal.pone.0001156
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001156
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0001156&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0001156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Tian & M. B. Traw & J. Q. Chen & M. Kreitman & J. Bergelson, 2003. "Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana," Nature, Nature, vol. 423(6935), pages 74-77, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeAngelis, Donald L. & Koslow, Jennifer M. & Jiang, Jiang & Ruan, Shigui, 2008. "Host mating system and the spread of a disease-resistant allele in a population," Theoretical Population Biology, Elsevier, vol. 74(2), pages 191-198.
    2. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Joo Hyun Im & Brian P Lazzaro, 2018. "Population genetic analysis of autophagy and phagocytosis genes in Drosophila melanogaster and D. simulans," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    4. Aleksandra Noweiska & Roksana Bobrowska & MichaƂ Tomasz Kwiatek, 2022. "Structural Polymorphisms of Chromosome 3A m Containing Lr63 Leaf Rust Resistance Loci Reflect the Geographical Distribution of Triticum monococcum L. and Related Diploid Wheats," Agriculture, MDPI, vol. 12(7), pages 1-11, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0001156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.