IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1009105.html
   My bibliography  Save this article

Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data

Author

Listed:
  • Haoran Xue
  • Wei Pan

Abstract

Orienting the causal relationship between pairs of traits is a fundamental task in scientific research with significant implications in practice, such as in prioritizing molecular targets and modifiable risk factors for developing therapeutic and interventional strategies for complex diseases. A recent method, called Steiger’s method, using a single SNP as an instrument variable (IV) in the framework of Mendelian randomization (MR), has since been widely applied. We report the following new contributions. First, we propose a single SNP-based alternative, overcoming a severe limitation of Steiger’s method in simply assuming, instead of inferring, the existence of a causal relationship. We also clarify a condition necessary for the validity of the methods in the presence of hidden confounding. Second, to improve statistical power, we propose combining the results from multiple, and possibly correlated, SNPs as multiple instruments. Third, we develop three goodness-of-fit tests to check modeling assumptions, including those required for valid IVs. Fourth, by relaxing one of the three IV assumptions in MR, we propose several methods, including an Egger regression-like approach and its multivariable version (analogous to multivariable MR), to account for horizontal pleiotropy of the SNPs/IVs, which is often unavoidable in practice. All our methods can simultaneously infer both the existence and (if so) the direction of a causal relationship, largely expanding their applicability over that of Steiger’s method. Although we focus on uni-directional causal relationships, we also briefly discuss an extension to bi-directional relationships. Through extensive simulations and an application to infer the causal directions between low density lipoprotein (LDL) cholesterol, or high density lipoprotein (HDL) cholesterol, and coronary artery disease (CAD), we demonstrate the superior performance and advantage of our proposed methods over Steiger’s method and bi-directional MR. In particular, after accounting for horizontal pleiotropy, our method confirmed the well known causal direction from LDL to CAD, while other methods, including bi-directional MR, might fail.Author summary: In spite of its importance, due to technical challenges, orienting causal relationships between pairs of traits has been largely under-studied. Mendelian randomization (MR) Steiger’s method has become increasingly used in the last two years. Here we point out several limitations with MR Steiger’s method and propose alternative approaches. First, MR Steiger’s method is based on using only one single SNP as the instrument variable (IV), for which we propose a correlation ratio-based method, called Causal Direction-Ratio, or simply CD-Ratio. An advantage of CD-Ratio is its inference of both the existence and (if so) the direction of a causal relationship, in contrast to MR Steiger’s prior assumption of the existence and its poor performance if the assumption is violated. Furthermore, CD-Ratio can be extended to combine the results from multiple, possibly correlated, SNPs with improved statistical power. Second, we propose two methods, called CD-Egger and CD-GLS, for multiple and possibly correlated SNPs while allowing horizontal pleiotropy. Third, we propose three goodness-of-fit tests to check modeling assumptions for the three proposed methods. Finally, we introduce multivariable CD-Egger, analogous to multivariable MR, as a more robust approach, and an extension of CD-Ratio to cases with possibly bi-directional causal relationships. Our numerical studies demonstrated superior performance of our proposed methods over MR Steiger and bi-directional MR. Our proposed methods, along with freely available software, are expected to be useful in practice for causal inference.

Suggested Citation

  • Haoran Xue & Wei Pan, 2020. "Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-30, November.
  • Handle: RePEc:plo:pgen00:1009105
    DOI: 10.1371/journal.pgen.1009105
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009105
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1009105&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1009105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kai Wang, 2018. "Understanding Power Anomalies in Mediation Analysis," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 387-406, June.
    2. Chunlin Li & Xiaotong Shen & Wei Pan, 2020. "Likelihood Ratio Tests for a Large Directed Acyclic Graph," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1304-1319, July.
    3. Yiping Yuan & Xiaotong Shen & Wei Pan & Zizhuo Wang, 2019. "Constrained likelihood for reconstructing a directed acyclic Gaussian graph," Biometrika, Biometrika Trust, vol. 106(1), pages 109-125.
    4. Guanghao Qi & Nilanjan Chatterjee, 2019. "Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Gibran Hemani & Kate Tilling & George Davey Smith, 2017. "Orienting the causal relationship between imprecisely measured traits using GWAS summary data," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-22, November.
    6. Zhihong Zhu & Zhili Zheng & Futao Zhang & Yang Wu & Maciej Trzaskowski & Robert Maier & Matthew R. Robinson & John J. McGrath & Peter M. Visscher & Naomi R. Wray & Jian Yang, 2018. "Causal associations between risk factors and common diseases inferred from GWAS summary data," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    7. Rebecca C Richmond & George Davey Smith & Andy R Ness & Marcel den Hoed & George McMahon & Nicholas J Timpson, 2014. "Assessing Causality in the Association between Child Adiposity and Physical Activity Levels: A Mendelian Randomization Analysis," PLOS Medicine, Public Library of Science, vol. 11(3), pages 1-16, March.
    8. Richard Howey & So-Youn Shin & Caroline Relton & George Davey Smith & Heather J Cordell, 2020. "Bayesian network analysis incorporating genetic anchors complements conventional Mendelian randomization approaches for exploratory analysis of causal relationships in complex data," PLOS Genetics, Public Library of Science, vol. 16(3), pages 1-35, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaotong Lin & Yangqing Deng & Wei Pan, 2021. "Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model," PLOS Genetics, Public Library of Science, vol. 17(11), pages 1-25, November.
    2. Qing Cheng & Xiao Zhang & Lin S. Chen & Jin Liu, 2022. "Mendelian randomization accounting for complex correlated horizontal pleiotropy while elucidating shared genetic etiology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Marie C. Sadler & Chiara Auwerx & Kaido Lepik & Eleonora Porcu & Zoltán Kutalik, 2022. "Quantifying the role of transcript levels in mediating DNA methylation effects on complex traits and diseases," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Liza Darrous & Ninon Mounier & Zoltán Kutalik, 2021. "Simultaneous estimation of bi-directional causal effects and heritable confounding from GWAS summary statistics," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Adrienne Tin & Pascal Schlosser & Pamela R. Matias-Garcia & Chris H. L. Thio & Roby Joehanes & Hongbo Liu & Zhi Yu & Antoine Weihs & Anselm Hoppmann & Franziska Grundner-Culemann & Josine L. Min & Vic, 2021. "Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    9. Emyr Reisha Isaura & Yang-Ching Chen & Shwu-Huey Yang, 2018. "Pathways from Food Consumption Score to Cardiovascular Disease: A Seven-Year Follow-Up Study of Indonesian Adults," IJERPH, MDPI, vol. 15(8), pages 1-15, July.
    10. Ju-Sheng Zheng & Jian’an Luan & Eleni Sofianopoulou & Stephen J Sharp & Felix R Day & Fumiaki Imamura & Thomas E Gundersen & Luca A Lotta & Ivonne Sluijs & Isobel D Stewart & Rupal L Shah & Yvonne T v, 2020. "The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis," PLOS Medicine, Public Library of Science, vol. 17(10), pages 1-21, October.
    11. Grace Png & Andrei Barysenka & Linda Repetto & Pau Navarro & Xia Shen & Maik Pietzner & Eleanor Wheeler & Nicholas J. Wareham & Claudia Langenberg & Emmanouil Tsafantakis & Maria Karaleftheri & George, 2021. "Mapping the serum proteome to neurological diseases using whole genome sequencing," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Yihe Yang & Noah Lorincz-Comi & Xiaofeng Zhu, 2023. "Unbiased estimation and asymptotically valid inference in multivariable Mendelian randomization with many weak instrumental variables," Papers 2301.05130, arXiv.org, revised Feb 2024.
    13. Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Eva-Maria Stauffer & Richard A. I. Bethlehem & Lena Dorfschmidt & Hyejung Won & Varun Warrier & Edward T. Bullmore, 2023. "The genetic relationships between brain structure and schizophrenia," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Emyr Reisha Isaura & Yang-Ching Chen & Shwu-Huey Yang, 2018. "The Association of Food Consumption Scores, Body Shape Index, and Hypertension in a Seven-Year Follow-Up among Indonesian Adults: A Longitudinal Study," IJERPH, MDPI, vol. 15(1), pages 1-12, January.
    16. Gemma Cadby & Corey Giles & Phillip E. Melton & Kevin Huynh & Natalie A. Mellett & Thy Duong & Anh Nguyen & Michelle Cinel & Alex Smith & Gavriel Olshansky & Tingting Wang & Marta Brozynska & Mike Ino, 2022. "Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Louise A C Millard & Neil M Davies & Kate Tilling & Tom R Gaunt & George Davey Smith, 2019. "Searching for the causal effects of body mass index in over 300 000 participants in UK Biobank, using Mendelian randomization," PLOS Genetics, Public Library of Science, vol. 15(2), pages 1-20, February.
    18. Yi-Qian Sun & Rebecca C Richmond & Yue Chen & Xiao-Mei Mai, 2020. "Mixed evidence for the relationship between periodontitis and Alzheimer’s disease: A bidirectional Mendelian randomization study," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-9, January.
    19. Ruoyu Wang & Qihua Wang & Wang Miao, 2023. "A robust fusion-extraction procedure with summary statistics in the presence of biased sources," Biometrika, Biometrika Trust, vol. 110(4), pages 1023-1040.
    20. Kuang‐Yao Lee & Lexin Li, 2022. "Functional structural equation model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 600-629, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1009105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.