IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007180.html
   My bibliography  Save this article

Significance of trends in gait dynamics

Author

Listed:
  • Klaudia Kozlowska
  • Miroslaw Latka
  • Bruce J West

Abstract

Trends in time series generated by physiological control systems are ubiquitous. Determining whether trends arise from intrinsic system dynamics or originate outside of the system is a fundamental problem of fractal series analysis. In the latter case, it is necessary to filter out the trends before attempting to quantify correlations in the noise (residuals). For over two decades, detrended fluctuation analysis (DFA) has been used to calculate scaling exponents of stride time (ST), stride length (SL), and stride speed (SS) of human gait. Herein, rather than relying on the very specific form of detrending characteristic of DFA, we adopt Multivariate Adaptive Regression Splines (MARS) to explicitly determine trends in spatio-temporal gait parameters during treadmill walking. Then, we use the madogram estimator to calculate the scaling exponent of the corresponding MARS residuals. The durations of ST and SL trends are determined to be independent of treadmill speed and have distributions with exponential tails. At all speeds considered, the trends of ST and SL are strongly correlated and are statistically independent of their corresponding residuals. The averages of scaling exponents of ST and SL MARS residuals are slightly smaller than 0.5. Thus, contrary to the interpretation prevalent in the literature, the statistical properties of ST and SL time series originate from the superposition of large scale trends and small scale fluctuations. We show that trends serve as the control manifolds about which ST and SL fluctuate. Moreover, the trend speed, defined as the ratio of instantaneous values of SL and ST trends, is tightly controlled about the treadmill speed. The strong coupling between the ST and SL trends ensures that the concomitant changes of their values correspond to movement along the constant speed goal equivalent manifold as postulated by Dingwell et al. 10.1371/journal.pcbi.1000856.Author summary: During treadmill walking, the subject’s stride time (ST) and stride length (SL) must yield a stride speed (SS) which can fluctuate over a narrow range centered on the treadmill belt’s speed. The fact that both ST and SL are persistent is an intriguing property of human gait. For persistent fluctuations any deviation from the mean value is likely to be followed by a deviation in the same direction. To trace the origin of such persistence, we used a novel approach to determine trends in spatio-temporal gait parameters. We find that the trends of ST and SL of a subject are strongly correlated and are statistically independent of their corresponding residuals. Moreover, the trend speed, defined as the ratio of instantaneous values of SL and ST trends, is tightly controlled about the treadmill speed. The persistence of gait parameters stems from superposition of large scale trends and small scale fluctuations.

Suggested Citation

  • Klaudia Kozlowska & Miroslaw Latka & Bruce J West, 2020. "Significance of trends in gait dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-25, October.
  • Handle: RePEc:plo:pcbi00:1007180
    DOI: 10.1371/journal.pcbi.1007180
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007180
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007180&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikita A Kuznetsov & Christopher K Rhea, 2017. "Power considerations for the application of detrended fluctuation analysis in gait variability studies," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    2. Amir Bashan & Ronny Bartsch & Jan W. Kantelhardt & Shlomo Havlin, 2008. "Comparison of detrending methods for fluctuation analysis," Papers 0804.4081, arXiv.org.
    3. Vivien Marmelat & Kjerstin Torre & Peter J Beek & Andreas Daffertshofer, 2014. "Persistent Fluctuations in Stride Intervals under Fractal Auditory Stimulation," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-9, March.
    4. Bashan, Amir & Bartsch, Ronny & Kantelhardt, Jan W. & Havlin, Shlomo, 2008. "Comparison of detrending methods for fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5080-5090.
    5. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marin-Lopez, A. & Martínez-Cadena, J.A. & Martinez-Martinez, F. & Alvarez-Ramirez, J., 2023. "Surrogate multivariate Hurst exponent analysis of gait dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    2. Zhang, Feng & Ren, Hang & Miao, Lijuan & Lei, Yadong & Duan, Mingkeng, 2019. "Simulation of daily precipitation from CMIP5 in the Qinghai-Tibet Plateau," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15, pages 68-74.
    3. Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2017. "An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series," Complexity, Hindawi, vol. 2017, pages 1-27, February.
    4. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    5. Almurad, Zainy M.H. & Delignières, Didier, 2016. "Evenly spacing in Detrended Fluctuation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 63-69.
    6. Alvarez-Ramirez, J. & Rodriguez, E., 2018. "AR(p)-based detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 49-57.
    7. Santos, José Vicente Cardoso & Perini, Noéle Bissoli & Moret, Marcelo Albano & Nascimento, Erick Giovani Sperandio & Moreira, Davidson Martins, 2021. "Scaling behavior of wind speed in the coast of Brazil and the South Atlantic Ocean: The crossover phenomenon," Energy, Elsevier, vol. 217(C).
    8. Kiyono, Ken & Tsujimoto, Yutaka, 2016. "Nonlinear filtering properties of detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 807-815.
    9. Kembro, Jackelyn M. & Flesia, Ana Georgina & Gleiser, Raquel M. & Perillo, María A. & Marin, Raul H., 2013. "Assessment of long-range correlation in animal behavior time series: The temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6400-6413.
    10. Rybski, Diego & Bunde, Armin, 2009. "On the detection of trends in long-term correlated records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1687-1695.
    11. Stratimirovic, Djordje & Batas-Bjelic, Ilija & Djurdjevic, Vladimir & Blesic, Suzana, 2021. "Changes in long-term properties and natural cycles of the Danube river level and flow induced by damming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    12. Gulich, Damián & Baglietto, Gabriel & Rozenfeld, Alejandro F., 2018. "Temporal correlations in the Vicsek model with vectorial noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 590-604.
    13. Leonarduzzi, R. & Wendt, H. & Abry, P. & Jaffard, S. & Melot, C. & Roux, S.G. & Torres, M.E., 2016. "p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 319-339.
    14. Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Time-singularity multifractal spectrum distribution based on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 351-366.
    15. Schumann, Aicko Y. & Kantelhardt, Jan W., 2011. "Multifractal moving average analysis and test of multifractal model with tuned correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2637-2654.
    16. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    17. Martin Magris & Jiyeong Kim & Esa Rasanen & Juho Kanniainen, 2017. "Long-range Auto-correlations in Limit Order Book Markets: Inter- and Cross-event Analysis," Papers 1711.03534, arXiv.org.
    18. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    19. Qian, Xi-Yuan & Gu, Gao-Feng & Zhou, Wei-Xing, 2011. "Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4388-4395.
    20. Francisco Gerardo Benavides-Bravo & Dulce Martinez-Peon & Ángela Gabriela Benavides-Ríos & Otoniel Walle-García & Roberto Soto-Villalobos & Mario A. Aguirre-López, 2021. "A Climate-Mathematical Clustering of Rainfall Stations in the Río Bravo-San Juan Basin (Mexico) by Using the Higuchi Fractal Dimension and the Hurst Exponent," Mathematics, MDPI, vol. 9(21), pages 1-11, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.