IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003863.html
   My bibliography  Save this article

The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion

Author

Listed:
  • Nicole Dölker
  • Maria W Górna
  • Ludovico Sutto
  • Antonio S Torralba
  • Giulio Superti-Furga
  • Francesco L Gervasio

Abstract

Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors.Author Summary: The Abl kinase is a key player in many crucial cellular processes. It is also an important anti-cancer drug target, because a mutation leading to the fusion protein Bcr-Abl is the main cause for chronic myeloid leukemia (CML). Abl inhibitors are currently the only pharmaceutical treatment for CML. There are two main difficulties associated with the development of kinase inhibitors: the high similarity between active sites of different kinases, which makes selectivity a challenge, and mutations leading to resistance, which make it mandatory to search for alternative drugs. One important factor controlling Abl is the interplay between the catalytic domain and an SH2 domain. We used computer simulations to understand how the interactions between the domains modify the dynamic of the kinase and detected both local and global effects. Based on our computer model, we suggested mutations that should alter the domain-domain interplay. Consequently, we tested the mutants experimentally and found that they support our hypothesis. We propose that our findings can be of help for the development of new classes of Abl inhibitors, which would modify the domain-domain interplay instead of interfering directly with the active site.

Suggested Citation

  • Nicole Dölker & Maria W Górna & Ludovico Sutto & Antonio S Torralba & Giulio Superti-Furga & Francesco L Gervasio, 2014. "The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-12, October.
  • Handle: RePEc:plo:pcbi00:1003863
    DOI: 10.1371/journal.pcbi.1003863
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003863
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003863&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenqing Xu & Stephen C. Harrison & Michael J. Eck, 1997. "Three-dimensional structure of the tyrosine kinase c-Src," Nature, Nature, vol. 385(6617), pages 595-602, February.
    2. Frank Sicheri & Ismail Moarefi & John Kuriyan, 1997. "Crystal structure of the Src family tyrosine kinase Hck," Nature, Nature, vol. 385(6617), pages 602-609, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sichun Yang & Benoît Roux, 2008. "Src Kinase Conformational Activation: Thermodynamics, Pathways, and Mechanisms," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-14, March.
    2. Trayder Thomas & Benoît Roux, 2021. "Tyrosine kinases: complex molecular systems challenging computational methodologies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.
    3. Hipólito Nicolás Cuesta-Hernández & Julia Contreras & Pablo Soriano-Maldonado & Jana Sánchez-Wandelmer & Wayland Yeung & Ana Martín-Hurtado & Inés G. Muñoz & Natarajan Kannan & Marta Llimargas & Javie, 2023. "An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Zhenxi Li & Xinghai Yang & Ruifeng Fu & Zhipeng Wu & Shengzhao Xu & Jian Jiao & Ming Qian & Long Zhang & Chunbiao Wu & Tianying Xie & Jiqiang Yao & Zhixiang Wu & Wenjun Li & Guoli Ma & Yu You & Yihua , 2024. "Kisspeptin-10 binding to Gpr54 in osteoclasts prevents bone loss by activating Dusp18-mediated dephosphorylation of Src," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.