IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v385y1997i6617d10.1038_385595a0.html
   My bibliography  Save this article

Three-dimensional structure of the tyrosine kinase c-Src

Author

Listed:
  • Wenqing Xu

    (Children's Hospital
    Departments of Microbiology and Molecular Genetics)

  • Stephen C. Harrison

    (Children's Hospital
    Departments of Biological Chemistry and Molecular Pharmacology
    Departments of Pediatrics
    The Howard Hughes Medical Institute)

  • Michael J. Eck

    (Children's Hospital
    Departments of Biological Chemistry and Molecular Pharmacology)

Abstract

The structure of a large fragment of the c-Src tyrosine kinase, comprising the regulatory and kinase domains and the carboxy-terminal tail, has been determined at 1.7 Å resolution in a closed, inactive state. Interactions among domains, stabilized by binding of the phosphorylated tail to the SH2 domain, lock the molecule in a conformation that simultaneously disrupts the kinase active site and sequesters the binding surfaces of the SH2 and SH3 domains. The structure shows how appropriate cellular signals, or transforming mutations in v-Src, could break these interactions to produce an open, active kinase.

Suggested Citation

  • Wenqing Xu & Stephen C. Harrison & Michael J. Eck, 1997. "Three-dimensional structure of the tyrosine kinase c-Src," Nature, Nature, vol. 385(6617), pages 595-602, February.
  • Handle: RePEc:nat:nature:v:385:y:1997:i:6617:d:10.1038_385595a0
    DOI: 10.1038/385595a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/385595a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/385595a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sichun Yang & Benoît Roux, 2008. "Src Kinase Conformational Activation: Thermodynamics, Pathways, and Mechanisms," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-14, March.
    2. Hipólito Nicolás Cuesta-Hernández & Julia Contreras & Pablo Soriano-Maldonado & Jana Sánchez-Wandelmer & Wayland Yeung & Ana Martín-Hurtado & Inés G. Muñoz & Natarajan Kannan & Marta Llimargas & Javie, 2023. "An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Zhenxi Li & Xinghai Yang & Ruifeng Fu & Zhipeng Wu & Shengzhao Xu & Jian Jiao & Ming Qian & Long Zhang & Chunbiao Wu & Tianying Xie & Jiqiang Yao & Zhixiang Wu & Wenjun Li & Guoli Ma & Yu You & Yihua , 2024. "Kisspeptin-10 binding to Gpr54 in osteoclasts prevents bone loss by activating Dusp18-mediated dephosphorylation of Src," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Nicole Dölker & Maria W Górna & Ludovico Sutto & Antonio S Torralba & Giulio Superti-Furga & Francesco L Gervasio, 2014. "The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-12, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:385:y:1997:i:6617:d:10.1038_385595a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.