IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002721.html
   My bibliography  Save this article

Probability Fluxes and Transition Paths in a Markovian Model Describing Complex Subunit Cooperativity in HCN2 Channels

Author

Listed:
  • Klaus Benndorf
  • Jana Kusch
  • Eckhard Schulz

Abstract

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are voltage-gated tetrameric cation channels that generate electrical rhythmicity in neurons and cardiomyocytes. Activation can be enhanced by the binding of adenosine-3′,5′-cyclic monophosphate (cAMP) to an intracellular cyclic nucleotide binding domain. Based on previously determined rate constants for a complex Markovian model describing the gating of homotetrameric HCN2 channels, we analyzed probability fluxes within this model, including unidirectional probability fluxes and the probability flux along transition paths. The time-dependent probability fluxes quantify the contributions of all 13 transitions of the model to channel activation. The binding of the first, third and fourth ligand evoked robust channel opening whereas the binding of the second ligand obstructed channel opening similar to the empty channel. Analysis of the net probability fluxes in terms of the transition path theory revealed pronounced hysteresis for channel activation and deactivation. These results provide quantitative insight into the complex interaction of the four structurally equal subunits, leading to non-equality in their function. Author Summary: The activation of a receptor protein by a small molecule (ligand) can be quantified by Markovian models. These models, which are widely used in natural sciences, consist of distinct states and transitions between them. In nature receptor proteins are often formed by the assembly of more than one subunit and each subunit can bind a ligand on its own. In such a multimeric receptor protein the translation of the ligand binding into receptor activation is more complex because the subunits interact. This usually limits the application of Markovian models. HCN2 pacemaker channels are tetrameric ion channels that mediate electrical rhythmicity in multiple brain and peripheral neurons and in specialized heart cells. The channels are modulated by cAMP binding to each subunit. We were recently successful to quantify ligand-induced activation for these channels by a complex Markovian model and a full set of rate constants. Herein we applied the transition path theory to further analyze the identified Markovian model, and we quantified time-dependent probability fluxes within the model. Our results provide unprecedented insight into the complex interaction of the four structurally equal subunits of a presumably fourfold symmetric channel that leads to pronounced non-equality of the subunit function.

Suggested Citation

  • Klaus Benndorf & Jana Kusch & Eckhard Schulz, 2012. "Probability Fluxes and Transition Paths in a Markovian Model Describing Complex Subunit Cooperativity in HCN2 Channels," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
  • Handle: RePEc:plo:pcbi00:1002721
    DOI: 10.1371/journal.pcbi.1002721
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002721
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002721&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Remigijus Lape & David Colquhoun & Lucia G. Sivilotti, 2008. "On the nature of partial agonism in the nicotinic receptor superfamily," Nature, Nature, vol. 454(7205), pages 722-727, August.
    2. Christoph Biskup & Jana Kusch & Eckhard Schulz & Vasilica Nache & Frank Schwede & Frank Lehmann & Volker Hagen & Klaus Benndorf, 2007. "Relating ligand binding to activation gating in CNGA2 channels," Nature, Nature, vol. 446(7134), pages 440-443, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabine Hummert & Susanne Thon & Thomas Eick & Ralf Schmauder & Eckhard Schulz & Klaus Benndorf, 2018. "Activation gating in HCN2 channels," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabine Hummert & Susanne Thon & Thomas Eick & Ralf Schmauder & Eckhard Schulz & Klaus Benndorf, 2018. "Activation gating in HCN2 channels," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-18, March.
    2. Xiaolong Gao & Philipp A. M. Schmidpeter & Vladimir Berka & Ryan J. Durham & Chen Fan & Vasanthi Jayaraman & Crina M. Nimigean, 2022. "Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Jerónimo Auzmendi & Darío Fernández Do Porto & Carla Pallavicini & Luciano Moffatt, 2012. "Achieving Maximal Speed of Solution Exchange for Patch Clamp Experiments," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    4. Dinesh C Indurthi & Trevor M Lewis & Philip K Ahring & Thomas Balle & Mary Chebib & Nathan L Absalom, 2016. "Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-20, August.
    5. Christian J. G. Tessier & Johnathon R. Emlaw & Raymond M. Sturgeon & Corrie J. B. daCosta, 2023. "Derepression may masquerade as activation in ligand-gated ion channels," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Vishal R. Patel & Arturo M. Salinas & Darong Qi & Shipra Gupta & David J. Sidote & Marcel P. Goldschen-Ohm, 2021. "Single-molecule imaging with cell-derived nanovesicles reveals early binding dynamics at a cyclic nucleotide-gated ion channel," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.