IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26816-5.html
   My bibliography  Save this article

Single-molecule imaging with cell-derived nanovesicles reveals early binding dynamics at a cyclic nucleotide-gated ion channel

Author

Listed:
  • Vishal R. Patel

    (The University of Texas at Austin
    The University of Texas at Austin)

  • Arturo M. Salinas

    (The University of Texas at Austin)

  • Darong Qi

    (The University of Texas at Austin)

  • Shipra Gupta

    (The University of Texas at Austin)

  • David J. Sidote

    (The University of Texas at Austin)

  • Marcel P. Goldschen-Ohm

    (The University of Texas at Austin)

Abstract

Ligand binding to membrane proteins is critical for many biological signaling processes. However, individual binding events are rarely directly observed, and their asynchronous dynamics are occluded in ensemble-averaged measures. For membrane proteins, single-molecule approaches that resolve these dynamics are challenged by dysfunction in non-native lipid environments, lack of access to intracellular sites, and costly sample preparation. Here, we introduce an approach combining cell-derived nanovesicles, microfluidics, and single-molecule fluorescence colocalization microscopy to track individual binding events at a cyclic nucleotide-gated TAX-4 ion channel critical for sensory transduction. Our observations reveal dynamics of both nucleotide binding and a subsequent conformational change likely preceding pore opening. Kinetic modeling suggests that binding of the second ligand is either independent of the first ligand or exhibits up to ~10-fold positive binding cooperativity. This approach is broadly applicable to studies of binding dynamics for proteins with extracellular or intracellular domains in native cell membrane.

Suggested Citation

  • Vishal R. Patel & Arturo M. Salinas & Darong Qi & Shipra Gupta & David J. Sidote & Marcel P. Goldschen-Ohm, 2021. "Single-molecule imaging with cell-derived nanovesicles reveals early binding dynamics at a cyclic nucleotide-gated ion channel," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26816-5
    DOI: 10.1038/s41467-021-26816-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26816-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26816-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christoph Biskup & Jana Kusch & Eckhard Schulz & Vasilica Nache & Frank Schwede & Frank Lehmann & Volker Hagen & Klaus Benndorf, 2007. "Relating ligand binding to activation gating in CNGA2 channels," Nature, Nature, vol. 446(7134), pages 440-443, March.
    2. Arin Marchesi & Xiaolong Gao & Ricardo Adaixo & Jan Rheinberger & Henning Stahlberg & Crina Nimigean & Simon Scheuring, 2018. "An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Nagendra Babu Thillaiappan & Alap P. Chavda & Stephen C. Tovey & David L. Prole & Colin W. Taylor, 2017. "Ca2+ signals initiate at immobile IP3 receptors adjacent to ER-plasma membrane junctions," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
    4. MariaLuisa Ruiz & Jeffrey W. Karpen, 1997. "Single cyclic nucleotide-gated channels locked in different ligand-bound states," Nature, Nature, vol. 389(6649), pages 389-392, September.
    5. Minghui Li & Xiaoyuan Zhou & Shu Wang & Ioannis Michailidis & Ye Gong & Deyuan Su & Huan Li & Xueming Li & Jian Yang, 2017. "Structure of a eukaryotic cyclic-nucleotide-gated channel," Nature, Nature, vol. 542(7639), pages 60-65, February.
    6. David S. White & Sandipan Chowdhury & Vinay Idikuda & Ruohan Zhang & Scott T. Retterer & Randall H. Goldsmith & Baron Chanda, 2021. "cAMP binding to closed pacemaker ion channels is non-cooperative," Nature, Nature, vol. 595(7868), pages 606-610, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolong Gao & Philipp A. M. Schmidpeter & Vladimir Berka & Ryan J. Durham & Chen Fan & Vasanthi Jayaraman & Crina M. Nimigean, 2022. "Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Maria Casas & Karl D. Murray & Keiko Hino & Nicholas C. Vierra & Sergi Simó & James S. Trimmer & Rose E. Dixon & Eamonn J. Dickson, 2023. "NPC1-dependent alterations in KV2.1–CaV1.2 nanodomains drive neuronal death in models of Niemann-Pick Type C disease," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Zhongjie Ye & Nicola Galvanetto & Leonardo Puppulin & Simone Pifferi & Holger Flechsig & Melanie Arndt & Cesar Adolfo Sánchez Triviño & Michael Palma & Shifeng Guo & Horst Vogel & Anna Menini & Clemen, 2024. "Structural heterogeneity of the ion and lipid channel TMEM16F," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Máté Katona & Ádám Bartók & Zuzana Nichtova & György Csordás & Elena Berezhnaya & David Weaver & Arijita Ghosh & Péter Várnai & David I. Yule & György Hajnóczky, 2022. "Capture at the ER-mitochondrial contacts licenses IP3 receptors to stimulate local Ca2+ transfer and oxidative metabolism," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Adam Lewis & Vilius Kurauskas & Marco Tonelli & Katherine Henzler-Wildman, 2021. "Ion-dependent structure, dynamics, and allosteric coupling in a non-selective cation channel," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Sabine Hummert & Susanne Thon & Thomas Eick & Ralf Schmauder & Eckhard Schulz & Klaus Benndorf, 2018. "Activation gating in HCN2 channels," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-18, March.
    7. Zhengshan Hu & Xiangdong Zheng & Jian Yang, 2023. "Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Klaus Benndorf & Jana Kusch & Eckhard Schulz, 2012. "Probability Fluxes and Transition Paths in a Markovian Model Describing Complex Subunit Cooperativity in HCN2 Channels," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26816-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.