IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000244.html
   My bibliography  Save this article

Mechanics and Dynamics of X-Chromosome Pairing at X Inactivation

Author

Listed:
  • Antonio Scialdone
  • Mario Nicodemi

Abstract

At the onset of X-chromosome inactivation, the vital process whereby female mammalian cells equalize X products with respect to males, the X chromosomes are colocalized along their Xic (X-inactivation center) regions. The mechanism inducing recognition and pairing of the X's remains, though, elusive. Starting from recent discoveries on the molecular factors and on the DNA sequences (the so-called “pairing sites”) involved, we dissect the mechanical basis of Xic colocalization by using a statistical physics model. We show that soluble DNA-specific binding molecules, such as those experimentally identified, can be indeed sufficient to induce the spontaneous colocalization of the homologous chromosomes but only when their concentration, or chemical affinity, rises above a threshold value as a consequence of a thermodynamic phase transition. We derive the likelihood of pairing and its probability distribution. Chromosome dynamics has two stages: an initial independent Brownian diffusion followed, after a characteristic time scale, by recognition and pairing. Finally, we investigate the effects of DNA deletion/insertions in the region of pairing sites and compare model predictions to available experimental data.Author Summary: Some important cellular processes involve homologous chromosome recognition and pairing. A prominent example is the colocalization of X chromosomes occurring at the onset of X chromosome inactivation, the vital process whereby female mammalian cells silence one of their two X chromosomes to equalize the dosage of X products with respect to males (having just one X). The crucial question on how the Xs recognize each other and come together is, however, still open. Starting from important recent experimental discoveries, we propose a quantitative model, from statistical mechanics, which elucidates the mechanical basis of such phenomena. We demonstrate that a set of soluble molecules binding specific DNA sequences are sufficient to induce recognition and colocalization. This is possible, however, only when their binding energy/concentration exceeds a threshold value, and this suggests how the cell could regulate colocalization. The pairing mechanism that we propose is grounded in general thermodynamic principles, so it could apply to other DNA pairing processes. While we also explore the kinetics of X colocalization, we compare our results to available experimental data and produce testable predictions.

Suggested Citation

  • Antonio Scialdone & Mario Nicodemi, 2008. "Mechanics and Dynamics of X-Chromosome Pairing at X Inactivation," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-7, December.
  • Handle: RePEc:plo:pcbi00:1000244
    DOI: 10.1371/journal.pcbi.1000244
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000244
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000244&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Fraser & Wendy Bickmore, 2007. "Nuclear organization of the genome and the potential for gene regulation," Nature, Nature, vol. 447(7143), pages 413-417, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus J. Buehler & Theodor Ackbarow, 2008. "Nanomechanical strength mechanisms of hierarchical biological materials and tissues," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(6), pages 595-607.
    2. Ramya Raviram & Pedro P Rocha & Christian L Müller & Emily R Miraldi & Sana Badri & Yi Fu & Emily Swanzey & Charlotte Proudhon & Valentina Snetkova & Richard Bonneau & Jane A Skok, 2016. "4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-23, March.
    3. Vesa Aho & Sami Salminen & Salla Mattola & Alka Gupta & Felix Flomm & Beate Sodeik & Jens B Bosse & Maija Vihinen-Ranta, 2021. "Infection-induced chromatin modifications facilitate translocation of herpes simplex virus capsids to the inner nuclear membrane," PLOS Pathogens, Public Library of Science, vol. 17(12), pages 1-20, December.
    4. Jing Kang & Bing Xu & Ye Yao & Wei Lin & Conor Hennessy & Peter Fraser & Jianfeng Feng, 2011. "A Dynamical Model Reveals Gene Co-Localizations in Nucleus," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.