IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v19y2017i2d10.1057_s41278-016-0055-3.html
   My bibliography  Save this article

Network assignment model of integrating maritime and hinterland container shipping: application to Central America

Author

Listed:
  • Ryuichi Shibasaki

    (National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure, Transport and Tourism (MLIT))

  • Takayuki Iijima

    (Port and Harbor Bureau, Tokyo Metropolitan Government)

  • Taiji Kawakami

    (MLIT)

  • Takashi Kadono

    (MLIT)

  • Tatsuyuki Shishido

    (The Overseas Coastal Area Development Institute of Japan (OCDI))

Abstract

The authors develop a model to predict worldwide container movements including both maritime and land shipping network from the viewpoint of cargo owners, given the liner shipping network provided by shipping companies and the level of service in each port. The network assignment methodology is applied to both an intermodal shipping network and maritime shipping sub-network, by which the solution can be obtained in a huge, real-scale network including more than 150 worlds’ container ports as well as some hinterland network of the world. The developed model is applied to the Central American region, where the international maritime containers are often transported across national borders by land. It is confirmed that the model output agrees with the actual container movement in terms of the container cargo throughput for each port, land container flow, and maritime flow by shipping company in Central America. Also, the model sensitivity to key parameters included in the model is confirmed reasonable. Finally, it is also confirmed that the model can predict the volume of containers handled in the port of La Union, where no liner service had previously called and a new liner service calls.

Suggested Citation

  • Ryuichi Shibasaki & Takayuki Iijima & Taiji Kawakami & Takashi Kadono & Tatsuyuki Shishido, 2017. "Network assignment model of integrating maritime and hinterland container shipping: application to Central America," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 234-273, June.
  • Handle: RePEc:pal:marecl:v:19:y:2017:i:2:d:10.1057_s41278-016-0055-3
    DOI: 10.1057/s41278-016-0055-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-016-0055-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41278-016-0055-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhiyuan & Meng, Qiang & Wang, Shuaian & Sun, Zhuo, 2014. "Global intermodal liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 28-39.
    2. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    3. Bell, Michael G.H. & Liu, Xin & Angeloudis, Panagiotis & Fonzone, Achille & Hosseinloo, Solmaz Haji, 2011. "A frequency-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1152-1161, September.
    4. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    5. Fan, Lei & Wilson, William W. & Dahl, Bruce, 2012. "Congestion, port expansion and spatial competition for US container imports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1121-1136.
    6. Lei Fan & William W Wilson & Denver Tolliver, 2009. "Logistical rivalries and port competition for container flows to US markets: Impacts of changes in Canada's logistics system and expansion of the Panama Canal," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(4), pages 327-357, December.
    7. Shibasaki, Ryuichi & Ieda, Hitoshi & Watanabe, Tomihiro, 2005. "An International Container Shipping Model in East Asia and its Transferability," Research in Transportation Economics, Elsevier, vol. 13(1), pages 299-336, January.
    8. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    9. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    10. Tavasszy, Lóránt & Minderhoud, Michiel & Perrin, Jean-François & Notteboom, Theo, 2011. "A strategic network choice model for global container flows: specification, estimation and application," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1163-1172.
    11. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    12. Ronen, David, 1983. "Cargo ships routing and scheduling: Survey of models and problems," European Journal of Operational Research, Elsevier, vol. 12(2), pages 119-126, February.
    13. Wang, Shuaian & Meng, Qiang & Sun, Zhuo, 2013. "Container routing in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    2. Watanabe, Daisuke & Shibasaki, Ryuichi & Arai, Hirofumi, 2021. "Logistics Policy Analysis and Network Model Simulation for Cross-Border Transport in the Trans-Caspian Transport Corridor: Global Intermodal Logistics Network Simulation (GLINS) Model," ADBI Working Papers 1269, Asian Development Bank Institute.
    3. Ryuichi Shibasaki & Satoshi Tanabe & Hironori Kato & Paul Tae-Woo Lee, 2019. "Could Gwadar Port in Pakistan Be a New Gateway? A Network Simulation Approach in the Context of the Belt and Road Initiative," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    4. Guo, Jianke & Wang, Ziqi & Yu, Xuhui, 2022. "Accessibility measurement of China's coastal ports from a land-sea coordination perspective - An empirical study," Journal of Transport Geography, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    2. Zheng, Jianfeng & Qi, Jingwen & Sun, Zhuo & Li, Feng, 2018. "Community structure based global hub location problem in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 1-19.
    3. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    4. Sun, Zhuo & Zheng, Jianfeng, 2016. "Finding potential hub locations for liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 750-761.
    5. Mulder, J. & Dekker, R., 2016. "Optimization in container liner shipping," Econometric Institute Research Papers EI2016-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.
    7. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    8. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    9. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    10. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.
    11. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    12. Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
    13. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    14. Meng, Qiang & Wang, Shuaian & Lee, Chung-Yee, 2015. "A tailored branch-and-price approach for a joint tramp ship routing and bunkering problem," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 1-19.
    15. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    16. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    17. Wang, Shuaian, 2014. "A novel hybrid-link-based container routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 165-175.
    18. Manuel Herrera & Per J. Agrell & Casiano Manrique-de-Lara-Peñate & Lourdes Trujillo, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," Annals of Operations Research, Springer, vol. 253(2), pages 845-869, June.
    19. Harilaos N. Psaraftis, 2019. "Ship routing and scheduling: the cart before the horse conjecture," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 111-124, March.
    20. Gerald G. Brown & Walter C. DeGrange & Wilson L. Price & Anton A. Rowe, 2017. "Scheduling combat logistics force replenishments at sea for the US Navy," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 677-693, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:19:y:2017:i:2:d:10.1057_s41278-016-0055-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.