IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v56y2005i3d10.1057_palgrave.jors.2601810.html
   My bibliography  Save this article

Solving capacitated facility location problems by Fenchel cutting planes

Author

Listed:
  • M T Ramos

    (Universidad de Valladolid)

  • J Sáez

    (Universidad de Valladolid)

Abstract

In this paper, we apply the Fenchel cutting planes methodology to Capacitated Facility Location problems. We select a suitable knapsack structure from which depth cuts can be obtained. Moreover, we simultaneously obtain a primal heuristic solution. The lower and upper bounds achieved by our procedure are compared with those provided by Lagrangean relaxation of the demand constraints. As the computational results show the Fenchel cutting planes methodology outperforms the Lagrangean one, both in the obtaining of the bounds and in the effectiveness of the branch and bound algorithm using each relaxation as the initial formulation.

Suggested Citation

  • M T Ramos & J Sáez, 2005. "Solving capacitated facility location problems by Fenchel cutting planes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 297-306, March.
  • Handle: RePEc:pal:jorsoc:v:56:y:2005:i:3:d:10.1057_palgrave.jors.2601810
    DOI: 10.1057/palgrave.jors.2601810
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601810
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karen Aardal & Yves Pochet & Laurence A. Wolsey, 1995. "Capacitated Facility Location: Valid Inequalities and Facets," Mathematics of Operations Research, INFORMS, vol. 20(3), pages 562-582, August.
    2. Barcelo, Jaime & Fernandez, Elena & Jornsten, Kurt O., 1991. "Computational results from a new Lagrangean relaxation algorithm for the capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 53(1), pages 38-45, July.
    3. Harlan Crowder & Ellis L. Johnson & Manfred Padberg, 1983. "Solving Large-Scale Zero-One Linear Programming Problems," Operations Research, INFORMS, vol. 31(5), pages 803-834, October.
    4. Ellis L. Johnson & George L. Nemhauser & Martin W.P. Savelsbergh, 2000. "Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 2-23, February.
    5. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    6. E. Andrew Boyd, 1994. "Fenchel Cutting Planes for Integer Programs," Operations Research, INFORMS, vol. 42(1), pages 53-64, February.
    7. Cornuejols, G. & Sridharan, R. & Thizy, J. M., 1991. "A comparison of heuristics and relaxations for the capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 50(3), pages 280-297, February.
    8. Sridharan, R., 1995. "The capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 87(2), pages 203-213, December.
    9. Jeremy F. Shapiro, 1971. "Generalized Lagrange Multipliers in Integer Programming," Operations Research, INFORMS, vol. 19(1), pages 68-76, February.
    10. Aardal, K. & Pochet, Y. & Wolsey, L. A., 1995. "Capacitated facility location: valid inequalities and facets," LIDAM Reprints CORE 1295, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. D. Chinhyung Cho & Manfred W. Padberg & M. R. Rao, 1983. "On the Uncapacitated Plant Location Problem. II: Facets and Lifting Theorems," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 590-612, November.
    12. Beasley, J. E., 1993. "Lagrangean heuristics for location problems," European Journal of Operational Research, Elsevier, vol. 65(3), pages 383-399, March.
    13. D. Chinhyung Cho & Ellis L. Johnson & Manfred Padberg & M. R. Rao, 1983. "On the Uncapacitated Plant Location Problem. I: Valid Inequalities and Facets," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 579-589, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhen & Chen, Haoxun & Chu, Feng & Wang, Nengmin, 2019. "An effective hybrid approach to the two-stage capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 275(2), pages 467-480.
    2. Saravanan Venkatachalam & Lewis Ntaimo, 2023. "Integer set reduction for stochastic mixed-integer programming," Computational Optimization and Applications, Springer, vol. 85(1), pages 181-211, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klose, Andreas, 2000. "A Lagrangean relax-and-cut approach for the two-stage capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 126(2), pages 408-421, October.
    2. Klaus Büdenbender & Tore Grünert & Hans-Jürgen Sebastian, 2000. "A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem," Transportation Science, INFORMS, vol. 34(4), pages 364-380, November.
    3. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
    4. Yong Liang & Mengshi Lu & Zuo‐Jun Max Shen & Runyu Tang, 2021. "Data Center Network Design for Internet‐Related Services and Cloud Computing," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2077-2101, July.
    5. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    7. Avella, P. & Boccia, M. & Mattia, S. & Rossi, F., 2021. "Weak flow cover inequalities for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 289(2), pages 485-494.
    8. Andreas Klose & Andreas Drexl, 2005. "Lower Bounds for the Capacitated Facility Location Problem Based on Column Generation," Management Science, INFORMS, vol. 51(11), pages 1689-1705, November.
    9. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.
    10. Tragantalerngsak, Suda & Holt, John & Ronnqvist, Mikael, 2000. "An exact method for the two-echelon, single-source, capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 123(3), pages 473-489, June.
    11. Rajgopal, Jayant & Wang, Zhouyan & Schaefer, Andrew J. & Prokopyev, Oleg A., 2011. "Integrated design and operation of remnant inventory supply chains under uncertainty," European Journal of Operational Research, Elsevier, vol. 214(2), pages 358-364, October.
    12. Bülent Çatay & Ş. Selçuk Erengüç & Asoo J. Vakharia, 2005. "Capacity allocation with machine duplication in semiconductor manufacturing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 659-667, October.
    13. Pasquale Avella & Maurizio Boccia, 2009. "A cutting plane algorithm for the capacitated facility location problem," Computational Optimization and Applications, Springer, vol. 43(1), pages 39-65, May.
    14. Yang, Zhen & Chu, Feng & Chen, Haoxun, 2012. "A cut-and-solve based algorithm for the single-source capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 521-532.
    15. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    16. Hinojosa, Y. & Puerto, J. & Fernandez, F. R., 2000. "A multiperiod two-echelon multicommodity capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 271-291, June.
    17. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Klose, Andreas & Drexl, Andreas, 2001. "Combinatorial optimisation problems of the assignment type and a partitioning approach," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 545, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Dupont, Lionel, 2008. "Branch and bound algorithm for a facility location problem with concave site dependent costs," International Journal of Production Economics, Elsevier, vol. 112(1), pages 245-254, March.
    20. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:56:y:2005:i:3:d:10.1057_palgrave.jors.2601810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.