IDEAS home Printed from https://ideas.repec.org/a/pal/assmgt/v18y2017i7d10.1057_s41260-017-0049-4.html
   My bibliography  Save this article

Information content of right option tails: Evidence from S&P 500 index options

Author

Listed:
  • Greg Orosi

Abstract

In this study, we investigate how useful the information content of out-of-the-money S&P 500 index call options is to predict the size and direction of the underlying index for the period 2004–2013. First, we demonstrate that behavior of the right tail of the option-implied risk-neutral distribution can be characterized by a single parameter. Subsequently, we find that weekly changes in the tail parameter can be used to devise trading strategies that are likely to outperform the underlying index on a risk-adjusted basis. Moreover, we demonstrate that even during a period when the strategies do not outperform the index, our approach can be used to obtain information about future index returns.

Suggested Citation

  • Greg Orosi, 2017. "Information content of right option tails: Evidence from S&P 500 index options," Journal of Asset Management, Palgrave Macmillan, vol. 18(7), pages 516-526, December.
  • Handle: RePEc:pal:assmgt:v:18:y:2017:i:7:d:10.1057_s41260-017-0049-4
    DOI: 10.1057/s41260-017-0049-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41260-017-0049-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41260-017-0049-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    2. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Steve Ross, 2015. "The Recovery Theorem," Journal of Finance, American Finance Association, vol. 70(2), pages 615-648, April.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Audrino, Francesco & Huitema, Robert & Ludwig, Markus, 2014. "An Empirical Analysis of the Ross Recovery Theorem," Economics Working Paper Series 1411, University of St. Gallen, School of Economics and Political Science.
    7. Eric Ghysels & Fangfang Wang, 2014. "Moment-Implied Densities: Properties and Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 88-111, January.
    8. Vicky Henderson & David Hobson & Tino Kluge, 2007. "Is there an informationally passive benchmark for option pricing incorporating maturity?," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 75-86.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Jensen, Christian Skov & Lando, David & Pedersen, Lasse Heje, 2019. "Generalized recovery," Journal of Financial Economics, Elsevier, vol. 133(1), pages 154-174.
    3. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    4. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    5. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    6. Connor J.A. Stuart & Sebastian A. Gehricke & Jin E. Zhang & Xinfeng Ruan, 2021. "Implied volatility smirk in the Australian dollar market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4573-4599, September.
    7. Felix Brinkmann & Olaf Korn, 2018. "Risk-adjusted option-implied moments," Review of Derivatives Research, Springer, vol. 21(2), pages 149-173, July.
    8. Jianhui Li & Sebastian A. Gehricke & Jin E. Zhang, 2019. "How do US options traders “smirk” on China? Evidence from FXI options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1450-1470, November.
    9. Jiao, Yuhan & Liu, Qiang & Guo, Shuxin, 2021. "Pricing kernel monotonicity and term structure: Evidence from China," Journal of Banking & Finance, Elsevier, vol. 123(C).
    10. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    11. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Hamed Ghanbari & Michael Oancea & Stylianos Perrakis, 2021. "Shedding light on a dark matter: Jump diffusion and option‐implied investor preferences," European Financial Management, European Financial Management Association, vol. 27(2), pages 244-286, March.
    14. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    15. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    16. Bertram Düring, 2009. "Asset pricing under information with stochastic volatility," Review of Derivatives Research, Springer, vol. 12(2), pages 141-167, July.
    17. Jarno Talponen, 2018. "Matching distributions: Recovery of implied physical densities from option prices," Papers 1803.03996, arXiv.org.
    18. Michal Czerwonko & Stylianos Perrakis, 2016. "Portfolio Selection with Transaction Costs and Jump-Diffusion Asset Dynamics II: Economic Implications," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-28, December.
    19. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    20. Carr, Peter & Wu, Liuren, 2016. "Analyzing volatility risk and risk premium in option contracts: A new theory," Journal of Financial Economics, Elsevier, vol. 120(1), pages 1-20.

    More about this item

    Keywords

    trading strategy; option-implied information; performance evaluation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:assmgt:v:18:y:2017:i:7:d:10.1057_s41260-017-0049-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.