Advanced Search
MyIDEAS: Login to save this article or follow this journal

Optimal Estimation of the Risk Premium for the Long Run and Asset Allocation: A Case of Compounded Estimation Risk

Contents:

Author Info

  • Eric Jacquier
  • Alex Kane
  • Alan J. Marcus

Abstract

It is well known that an unbiased forecast of the terminal value of a portfolio requires compounding at the arithmetic mean return over the investment horizon. However, the maximum-likelihood practice, common with academics, of compounding at the estimator of mean return results in upward biased and highly inefficient estimates of long-term expected returns. We derive analytically both an unbiased and a small-sample efficient estimator of long-term expected returns for a given sample size and horizon. Both estimators entail penalties that reduce the annual compounding rate as the investment horizon increases. The unbiased estimator, which is far lower than the compounded arithmetic average, is still very inefficient, often more so than a simple geometric estimator known to practitioners. Our small-sample efficient estimator is even lower. These results compound the sobering evidence in recent work that the equity risk premium is lower than suggested by post-1926 data. Our methodology and results are robust to extensions such as predictable returns. We also confirm analytically that parameter uncertainty, properly incorporated, produces optimal asset allocations, in stark contrast to conventional wisdom. Longer investment horizons require lower, not higher, allocations to risky assets. Copyright 2005, Oxford University Press.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1093/jjfinec/nbi001
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Society for Financial Econometrics in its journal Journal of Financial Econometrics.

Volume (Year): 3 (2005)
Issue (Month): 1 ()
Pages: 37-55

as in new window
Handle: RePEc:oup:jfinec:v:3:y:2005:i:1:p:37-55

Contact details of provider:
Postal: Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK
Fax: 01865 267 985
Email:
Web page: http://jfec.oxfordjournals.org/
More information through EDIRC

Order Information:
Web: http://www.oup.co.uk/journals

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Maheu, John M. & McCurdy, Thomas H., 2009. "How Useful are Historical Data for Forecasting the Long-Run Equity Return Distribution?," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 95-112.
  2. Freeman, Mark C., 2009. "Yes, we should discount the far-distant future at its lowest possible rate: a resolution of the Weitzman-Gollier puzzle," Economics Discussion Papers 2009-42, Kiel Institute for the World Economy.
  3. Freeman, Mark C., 2010. "Yes, we should discount the far-distant future at its lowest possible rate: A resolution of the Weitzman-Gollier puzzle," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy, vol. 4(13), pages 1-21.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:3:y:2005:i:1:p:37-55. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.