IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v8y2012i3p165-172.html
   My bibliography  Save this article

Experimental investigation of a liquid desiccant cooling system driven by flue gas waste heat of a biomass boiler

Author

Listed:
  • Guoquan Qiu
  • Hao Liu
  • Saffa B. Riffat

Abstract

This paper presents the preliminary experimental results of a liquid desiccant cooling system driven by the flue gas waste heat of a biomass boiler. The desiccant cooling system is mainly composed of a regenerator, a dehumidifier and an evaporative cooler. The flue gas waste heat is applied to the regenerator to regenerate the desiccant solution. The environmentally friendly liquid desiccant potassium formate (HCOOK) solution is used in the dehumidifier for air dehumidification due to its less corrosion, lower cost, lower density and lower viscosity. A cross-flow heat and mass exchanger for indirect evaporative cooling is adopted in the evaporative cooler to ensure that product air meets the indoor air quality and thermal comfort standard. The desiccant cooling system operated in Autumn days in Nottingham was found to be able to decrease the air temperature by 4°C and reach a cooling capacity of up to 2381 W. Moreover, the dehumidifier is able to reduce the relative humidity of the humid air by 13%. The biomass boiler's flue gas waste heat extracted and supplied to the regenerator was found to be 554 W, which is insufficient to regenerate the dilute liquid desiccant solution under current experimental conditions. To obtain sufficient heat to regenerate the liquid desiccant, the existing first-of-its-kind concentric helical coil heat exchanger extracting the waste heat of the boiler needs to be redesigned, and, in particular, the concentric helical coils of the heat exchanger need to be placed inside the chimney to enhance the waste heat extraction. Copyright , Oxford University Press.

Suggested Citation

  • Guoquan Qiu & Hao Liu & Saffa B. Riffat, 2012. "Experimental investigation of a liquid desiccant cooling system driven by flue gas waste heat of a biomass boiler," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(3), pages 165-172, January.
  • Handle: RePEc:oup:ijlctc:v:8:y:2012:i:3:p:165-172
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/cts003
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:8:y:2012:i:3:p:165-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.