IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i2p459-471.html
   My bibliography  Save this article

On balanced random imputation in surveys

Author

Listed:
  • G. Chauvet
  • J.-C. Deville
  • D. Haziza

Abstract

Random imputation methods are often used in practice because they tend to preserve the distribution of the variable being imputed, which is an important property when the goal is to estimate population quantiles. However, this type of imputation method introduces additional variability, the imputation variance, due to the random selection of residuals. In this paper, we propose a class of random balanced imputation methods under which the imputation variance is eliminated while the distribution of the variable being imputed is preserved. The rationale behind balanced imputation is to select residuals at random so that appropriate constraints are satisfied. We describe an algorithm for selecting the random residuals that can be viewed as an adaptation of the cube algorithm proposed in the context of balanced sampling (Deville & Tille, 2004). Results of a simulation study support our findings. Copyright 2011, Oxford University Press.

Suggested Citation

  • G. Chauvet & J.-C. Deville & D. Haziza, 2011. "On balanced random imputation in surveys," Biometrika, Biometrika Trust, vol. 98(2), pages 459-471.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:459-471
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr011
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caren Hasler & Radu V. Craiu, 2020. "Nonparametric imputation method for nonresponse in surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 25-48, March.
    2. Chauvet, Guillaume & Do Paco, Wilfried, 2018. "Exact balanced random imputation for sample survey data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 1-16.
    3. Helene Boistard & Guillaume Chauvet & David Haziza, 2016. "Doubly Robust Inference for the Distribution Function in the Presence of Missing Survey Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 683-699, September.
    4. Damião N. Da Silva & Li‐Chun Zhang, 2021. "A calibrated imputation method for secondary data analysis of survey data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 25-41, March.
    5. Hasler, Caren & Tillé, Yves, 2014. "Fast balanced sampling for highly stratified population," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 81-94.
    6. Torres Munguía, Juan Armando, 2014. "Comparison of Imputation Methods for Handling Missing Categorical Data with Univariate Pattern|| Una comparación de métodos de imputación de variables categóricas con patrón univariado," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 17(1), pages 101-120, June.
    7. Gelein, Brigitte & Haziza, David & Causeur, David, 2014. "Preserving relationships between variables with MIVQUE based imputation for missing survey data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 197-208.
    8. Leuenberger, Michael & Eustache, Esther & Jauslin, Raphaël & Tillé, Yves, 2022. "Balancing a sample almost perfectly," Statistics & Probability Letters, Elsevier, vol. 180(C).
    9. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:459-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.