IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v74y2014icp81-94.html
   My bibliography  Save this article

Fast balanced sampling for highly stratified population

Author

Listed:
  • Hasler, Caren
  • Tillé, Yves

Abstract

Balanced sampling is a very efficient sampling design when the variable of interest is correlated to the auxiliary variables on which the sample is balanced. A procedure to select balanced samples in a stratified population has previously been proposed. Unfortunately, this procedure becomes very slow as the number of strata increases and it even fails to select samples for some large numbers of strata. A new algorithm to select balanced samples in a stratified population is proposed. This new procedure is much faster than the existing one when the number of strata is large. Furthermore, this new procedure makes it possible to select samples for some large numbers of strata, which was impossible with the existing method. Balanced sampling can then be applied on a highly stratified population when only a few units are selected in each stratum. Finally, this algorithm turns out to be valuable for many applications as, for instance, for the handling of nonresponse.

Suggested Citation

  • Hasler, Caren & Tillé, Yves, 2014. "Fast balanced sampling for highly stratified population," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 81-94.
  • Handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:81-94
    DOI: 10.1016/j.csda.2013.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731300474X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tommy Wright, 2012. "The Equivalence of Neyman Optimum Allocation for Sampling and Equal Proportions for Apportioning the U.S. House of Representatives," The American Statistician, Taylor & Francis Journals, vol. 66(4), pages 217-224, November.
    2. Diaz-Garcia, Jose A. & Garay-Tapia, Ma. Magdalena, 2007. "Optimum allocation in stratified surveys: Stochastic programming," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3016-3026, March.
    3. Tillé, Yves & Favre, Anne-Catherine, 2005. "Optimal allocation in balanced sampling," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 31-37, August.
    4. W. Bühler & T. Deutler, 1975. "Optimal stratification and grouping by dynamic programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 22(1), pages 161-175, December.
    5. Desislava Nedyalkova & Yves Tillé, 2008. "Optimal sampling and estimation strategies under the linear model," Biometrika, Biometrika Trust, vol. 95(3), pages 521-537.
    6. Guillaume Chauvet & Yves Tillé, 2006. "A fast algorithm for balanced sampling," Computational Statistics, Springer, vol. 21(1), pages 53-62, March.
    7. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    8. G. Chauvet & J.-C. Deville & D. Haziza, 2011. "On balanced random imputation in surveys," Biometrika, Biometrika Trust, vol. 98(2), pages 459-471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chauvet, Guillaume & Do Paco, Wilfried, 2018. "Exact balanced random imputation for sample survey data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 1-16.
    2. Barry Schouten & Natalie Shlomo, 2017. "Selecting Adaptive Survey Design Strata with Partial R-indicators," International Statistical Review, International Statistical Institute, vol. 85(1), pages 143-163, April.
    3. Leuenberger, Michael & Eustache, Esther & Jauslin, Raphaël & Tillé, Yves, 2022. "Balancing a sample almost perfectly," Statistics & Probability Letters, Elsevier, vol. 180(C).
    4. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Benedetti & M. S. Andreano & F. Piersimoni, 2019. "Sample selection when a multivariate set of size measures is available," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 1-25, March.
    2. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    3. Chauvet, Guillaume & Do Paco, Wilfried, 2018. "Exact balanced random imputation for sample survey data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 1-16.
    4. Leuenberger, Michael & Eustache, Esther & Jauslin, Raphaël & Tillé, Yves, 2022. "Balancing a sample almost perfectly," Statistics & Probability Letters, Elsevier, vol. 180(C).
    5. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    6. G. Alleva & G. Arbia & P. D. Falorsi & V. Nardelli & A. Zuliani, 2023. "Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 983-999, September.
    7. Alfio Marazzi & Yves Tillé, 2017. "Using past experience to optimize audit sampling design," Review of Quantitative Finance and Accounting, Springer, vol. 49(2), pages 435-462, August.
    8. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    9. Maria Michela Dickson & Yves Tillé, 2016. "Ordered spatial sampling by means of the traveling salesman problem," Computational Statistics, Springer, vol. 31(4), pages 1359-1372, December.
    10. Roberto Benedetti & Maria Michela Dickson & Giuseppe Espa & Francesco Pantalone & Federica Piersimoni, 2022. "A simulated annealing-based algorithm for selecting balanced samples," Computational Statistics, Springer, vol. 37(1), pages 491-505, March.
    11. Hervé Cardot & Camelia Goga & Pauline Lardin, 2014. "Variance Estimation and Asymptotic Confidence Bands for the Mean Estimator of Sampled Functional Data with High Entropy Unequal Probability Sampling Designs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 516-534, June.
    12. Kaeding, Matthias, 2016. "Fast, approximate MCMC for Bayesian analysis of large data sets: A design based approach," Ruhr Economic Papers 660, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2017. "Spatially Balanced Sampling: A Review and A Reappraisal," International Statistical Review, International Statistical Institute, vol. 85(3), pages 439-454, December.
    14. Donatien Tafin Djoko & Yves Till�, 2015. "Selection of balanced portfolios to track the main properties of a large market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 359-370, February.
    15. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    16. Matei Alina, 2021. "Book Review," Journal of Official Statistics, Sciendo, vol. 37(4), pages 1079-1081, December.
    17. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    18. K. G. Reddy & M. G. M. Khan, 2020. "stratifyR: An R Package for optimal stratification and sample allocation for univariate populations," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 383-405, September.
    19. Louis‐Paul Rivest & Serigne Abib Gaye, 2023. "Using Survey Sampling Algorithms For Exact Inference in Logistic Regression," International Statistical Review, International Statistical Institute, vol. 91(1), pages 18-34, April.
    20. Lennart Bondesson, 2010. "Conditional and Restricted Pareto Sampling: Two New Methods for Unequal Probability Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 514-530, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:81-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.