IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v598y2021i7880d10.1038_s41586-021-03907-3.html
   My bibliography  Save this article

Photocatalytic solar hydrogen production from water on a 100-m2 scale

Author

Listed:
  • Hiroshi Nishiyama

    (Office of University Professors, The University of Tokyo)

  • Taro Yamada

    (Office of University Professors, The University of Tokyo)

  • Mamiko Nakabayashi

    (The University of Tokyo)

  • Yoshiki Maehara

    (Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem)
    FUJIFILM Corporation, Ashigarakami-gun)

  • Masaharu Yamaguchi

    (Office of University Professors, The University of Tokyo)

  • Yasuko Kuromiya

    (Office of University Professors, The University of Tokyo)

  • Yoshie Nagatsuma

    (Office of University Professors, The University of Tokyo)

  • Hiromasa Tokudome

    (Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem)
    Research Institute, TOTO Ltd.)

  • Seiji Akiyama

    (Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem)
    Mitsubishi Chemical Corporation, Science & Innovation Center)

  • Tomoaki Watanabe

    (Meiji University)

  • Ryoichi Narushima

    (Office of University Professors, The University of Tokyo)

  • Sayuri Okunaka

    (Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem)
    Research Institute, TOTO Ltd.
    Global Zero Emission Research Center (GZR), National Institution of Advanced Industrial Science and Technology (AIST))

  • Naoya Shibata

    (The University of Tokyo)

  • Tsuyoshi Takata

    (Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University)

  • Takashi Hisatomi

    (Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University)

  • Kazunari Domen

    (Office of University Professors, The University of Tokyo
    Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University)

Abstract

The unprecedented impact of human activity on Earth’s climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable from water through photocatalysis using sunlight, and through electrolysis driven by solar or wind energy1,2. The most efficient solar hydrogen production schemes, which couple solar cells to electrolysis systems, reach solar-to-hydrogen (STH) energy conversion efficiencies of 30% at a laboratory scale3. Photocatalytic water splitting reaches notably lower conversion efficiencies of only around 1%, but the system design is much simpler and cheaper and more amenable to scale-up1,2—provided the moist, stoichiometric hydrogen and oxygen product mixture can be handled safely in a field environment and the hydrogen recovered. Extending our earlier demonstration of a 1-m2 panel reactor system based on a modified, aluminium-doped strontium titanate particulate photocatalyst4, we here report safe operation of a 100-m2 array of panel reactors over several months with autonomous recovery of hydrogen from the moist gas product mixture using a commercial polyimide membrane5. The system, optimized for safety and durability, and remaining undamaged on intentional ignition of recovered hydrogen, reaches a maximum STH of 0.76%. While the hydrogen production is inefficient and energy negative overall, our findings demonstrate that safe, large-scale photocatalytic water splitting, and gas collection and separation are possible. To make the technology economically viable and practically useful, essential next steps are reactor and process optimization to substantially reduce costs and improve STH efficiency, photocatalyst stability and gas separation efficiency.

Suggested Citation

  • Hiroshi Nishiyama & Taro Yamada & Mamiko Nakabayashi & Yoshiki Maehara & Masaharu Yamaguchi & Yasuko Kuromiya & Yoshie Nagatsuma & Hiromasa Tokudome & Seiji Akiyama & Tomoaki Watanabe & Ryoichi Narush, 2021. "Photocatalytic solar hydrogen production from water on a 100-m2 scale," Nature, Nature, vol. 598(7880), pages 304-307, October.
  • Handle: RePEc:nat:nature:v:598:y:2021:i:7880:d:10.1038_s41586-021-03907-3
    DOI: 10.1038/s41586-021-03907-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03907-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03907-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Zhang & Michael Schwarze & Reinhard Schomäcker & Roel Krol & Fatwa F. Abdi, 2023. "Life cycle net energy assessment of sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xiangdong Zhu & Litao Lin & Mingyue Pang & Chao Jia & Longlong Xia & Guosheng Shi & Shicheng Zhang & Yuanda Lu & Liming Sun & Fengbo Yu & Jie Gao & Zhelin He & Xuan Wu & Aodi Li & Liang Wang & Meiling, 2024. "Continuous and low-carbon production of biomass flash graphene," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yaguang Li & Xianhua Bai & Dachao Yuan & Fengyu Zhang & Bo Li & Xingyuan San & Baolai Liang & Shufang Wang & Jun Luo & Guangsheng Fu, 2022. "General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Jie Fu & Zeyu Fan & Mamiko Nakabayashi & Huanxin Ju & Nadiia Pastukhova & Yequan Xiao & Chao Feng & Naoya Shibata & Kazunari Domen & Yanbo Li, 2022. "Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Lihua Lin & Yiwen Ma & Junie Jhon M. Vequizo & Mamiko Nakabayashi & Chen Gu & Xiaoping Tao & Hiroaki Yoshida & Yuriy Pihosh & Yuta Nishina & Akira Yamakata & Naoya Shibata & Takashi Hisatomi & Tsuyosh, 2024. "Efficient and stable visible-light-driven Z-scheme overall water splitting using an oxysulfide H2 evolution photocatalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Takuya Suguro & Fuminao Kishimoto & Nobuko Kariya & Tsuyoshi Fukui & Mamiko Nakabayashi & Naoya Shibata & Tsuyoshi Takata & Kazunari Domen & Kazuhiro Takanabe, 2022. "A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Jining Guo & Yuecheng Zhang & Ali Zavabeti & Kaifei Chen & Yalou Guo & Guoping Hu & Xiaolei Fan & Gang Kevin Li, 2022. "Hydrogen production from the air," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Sun, Zhen & Wang, Junxiang & Lu, Sen & Zhang, Guan, 2022. "Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst," Renewable Energy, Elsevier, vol. 197(C), pages 151-160.
    9. Jonas Bollmann & Sudhagar Pitchaimuthu & Moritz F. Kühnel, 2023. "Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies," Energies, MDPI, vol. 16(8), pages 1-13, April.
    10. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    11. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Cruz, Pedro L. & Dufour, Javier & Iribarren, Diego, 2023. "Conceptualization and application of an environmental dashboard to benchmark technical aspects in photocatalytic hydrogen production," Renewable Energy, Elsevier, vol. 210(C), pages 424-430.
    13. Mahdi Takach & Mirza Sarajlić & Dorothee Peters & Michael Kroener & Frank Schuldt & Karsten von Maydell, 2022. "Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns," Energies, MDPI, vol. 15(4), pages 1-17, February.
    14. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Jie Huang & Yuyang Kang & Jianan Liu & Tingting Yao & Jianhang Qiu & Peipei Du & Biaohong Huang & Weijin Hu & Yan Liang & Tengfeng Xie & Chunlin Chen & Li-Chang Yin & Lianzhou Wang & Hui-Ming Cheng & , 2023. "Gradient tungsten-doped Bi3TiNbO9 ferroelectric photocatalysts with additional built-in electric field for efficient overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:598:y:2021:i:7880:d:10.1038_s41586-021-03907-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.