IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v597y2021i7878d10.1038_s41586-021-03833-4.html
   My bibliography  Save this article

Non-Hermitian topological whispering gallery

Author

Listed:
  • Bolun Hu

    (Nanjing University)

  • Zhiwang Zhang

    (Nanjing University)

  • Haixiao Zhang

    (Nanjing University)

  • Liyang Zheng

    (Universidad Carlos III de Madrid)

  • Wei Xiong

    (Nanjing University)

  • Zichong Yue

    (Nanjing University)

  • Xiaoyu Wang

    (Nanjing University)

  • Jianyi Xu

    (Nanjing University)

  • Ying Cheng

    (Nanjing University)

  • Xiaojun Liu

    (Nanjing University)

  • Johan Christensen

    (Universidad Carlos III de Madrid)

Abstract

In 1878, Lord Rayleigh observed the highly celebrated phenomenon of sound waves that creep around the curved gallery of St Paul’s Cathedral in London1,2. These whispering-gallery waves scatter efficiently with little diffraction around an enclosure and have since found applications in ultrasonic fatigue and crack testing, and in the optical sensing of nanoparticles or molecules using silica microscale toroids. Recently, intense research efforts have focused on exploring non-Hermitian systems with cleverly matched gain and loss, facilitating unidirectional invisibility and exotic characteristics of exceptional points3,4. Likewise, the surge in physics using topological insulators comprising non-trivial symmetry-protected phases has laid the groundwork in reshaping highly unconventional avenues for robust and reflection-free guiding and steering of both sound and light5,6. Here we construct a topological gallery insulator using sonic crystals made of thermoplastic rods that are decorated with carbon nanotube films, which act as a sonic gain medium by virtue of electro-thermoacoustic coupling. By engineering specific non-Hermiticity textures to the activated rods, we are able to break the chiral symmetry of the whispering-gallery modes, which enables the out-coupling of topological ‘audio lasing’ modes with the desired handedness. We foresee that these findings will stimulate progress in non-destructive testing and acoustic sensing.

Suggested Citation

  • Bolun Hu & Zhiwang Zhang & Haixiao Zhang & Liyang Zheng & Wei Xiong & Zichong Yue & Xiaoyu Wang & Jianyi Xu & Ying Cheng & Xiaojun Liu & Johan Christensen, 2021. "Non-Hermitian topological whispering gallery," Nature, Nature, vol. 597(7878), pages 655-659, September.
  • Handle: RePEc:nat:nature:v:597:y:2021:i:7878:d:10.1038_s41586-021-03833-4
    DOI: 10.1038/s41586-021-03833-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03833-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03833-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Penghao Zhu & Xiao-Qi Sun & Taylor L. Hughes & Gaurav Bahl, 2023. "Higher rank chirality and non-Hermitian skin effect in a topolectrical circuit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Zhiwang Zhang & Penglin Gao & Wenjie Liu & Zichong Yue & Ying Cheng & Xiaojun Liu & Johan Christensen, 2022. "Structured sonic tube with carbon nanotube-like topological edge states," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:597:y:2021:i:7878:d:10.1038_s41586-021-03833-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.