IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40236-7.html
   My bibliography  Save this article

Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points

Author

Listed:
  • Qiuyan Zhou

    (Wuhan University)

  • Jien Wu

    (South China University of Technology)

  • Zhenhang Pu

    (Wuhan University)

  • Jiuyang Lu

    (Wuhan University
    South China University of Technology)

  • Xueqin Huang

    (South China University of Technology)

  • Weiyin Deng

    (Wuhan University
    South China University of Technology)

  • Manzhu Ke

    (Wuhan University)

  • Zhengyou Liu

    (Wuhan University
    Wuhan University)

Abstract

Exceptional points and skin effect, as the two distinct hallmark features unique to the non-Hermitian physics, have each attracted enormous interests. Recent theoretical works reveal that the topologically nontrivial exceptional points can guarantee the non-Hermitian skin effect, which is geometry-dependent, relating these two unique phenomena. However, such novel relation remains to be confirmed by experiments. Here, we realize a non-Hermitian phononic crystal with exceptional points, which exhibits the geometry-dependent skin effect. The exceptional points connected by the bulk Fermi arcs, and the skin effects with the geometry dependence, are evidenced in simulations and experiments. Our work, building an experimental bridge between the exceptional points and skin effect and uncovering the unconventional geometry-dependent skin effect, expands a horizon in non-Hermitian physics.

Suggested Citation

  • Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40236-7
    DOI: 10.1038/s41467-023-40236-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40236-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40236-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 548(7666), pages 187-191, August.
    2. Deyuan Zou & Tian Chen & Wenjing He & Jiacheng Bao & Ching Hua Lee & Houjun Sun & Xiangdong Zhang, 2021. "Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Kai Wang & Avik Dutt & Charles C. Wojcik & Shanhui Fan, 2021. "Topological complex-energy braiding of non-Hermitian bands," Nature, Nature, vol. 598(7879), pages 59-64, October.
    4. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Wei Wang & Xulong Wang & Guancong Ma, 2022. "Non-Hermitian morphing of topological modes," Nature, Nature, vol. 608(7921), pages 50-55, August.
    6. Bo Zhen & Chia Wei Hsu & Yuichi Igarashi & Ling Lu & Ido Kaminer & Adi Pick & Song-Liang Chua & John D. Joannopoulos & Marin Soljačić, 2015. "Spawning rings of exceptional points out of Dirac cones," Nature, Nature, vol. 525(7569), pages 354-358, September.
    7. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Erratum: Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 551(7682), pages 658-658, November.
    8. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Yongquan Zeng & Udvas Chattopadhyay & Bofeng Zhu & Bo Qiang & Jinghao Li & Yuhao Jin & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Baile Zhang & Yidong Chong & Qi Jie Wang, 2020. "Electrically pumped topological laser with valley edge modes," Nature, Nature, vol. 578(7794), pages 246-250, February.
    10. Bolun Hu & Zhiwang Zhang & Haixiao Zhang & Liyang Zheng & Wei Xiong & Zichong Yue & Xiaoyu Wang & Jianyi Xu & Ying Cheng & Xiaojun Liu & Johan Christensen, 2021. "Non-Hermitian topological whispering gallery," Nature, Nature, vol. 597(7878), pages 655-659, September.
    11. Xiujuan Zhang & Yuan Tian & Jian-Hua Jiang & Ming-Hui Lu & Yan-Feng Chen, 2021. "Observation of higher-order non-Hermitian skin effect," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Li Zhang & Yihao Yang & Yong Ge & Yi-Jun Guan & Qiaolu Chen & Qinghui Yan & Fujia Chen & Rui Xi & Yuanzhen Li & Ding Jia & Shou-Qi Yuan & Hong-Xiang Sun & Hongsheng Chen & Baile Zhang, 2021. "Acoustic non-Hermitian skin effect from twisted winding topology," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    13. Yi-Cheng Wang & Jhih-Shih You & H. H. Jen, 2022. "A non-Hermitian optical atomic mirror," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuewei Zhang & Chaohua Wu & Mou Yan & Ni Liu & Ziyu Wang & Gang Chen, 2024. "Observation of continuum Landau modes in non-Hermitian electric circuits," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongming Gu & He Gao & Haoran Xue & Jensen Li & Zhongqing Su & Jie Zhu, 2022. "Transient non-Hermitian skin effect," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Xuewei Zhang & Chaohua Wu & Mou Yan & Ni Liu & Ziyu Wang & Gang Chen, 2024. "Observation of continuum Landau modes in non-Hermitian electric circuits," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Quan Lin & Wei Yi & Peng Xue, 2023. "Manipulating directional flow in a two-dimensional photonic quantum walk under a synthetic magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Djorwé, P. & Alphonse, H. & Abbagari, S. & Doka, S.Y. & Engo, S.G. Nana, 2023. "Synthetic magnetism for solitons in optomechanical array," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Arunn Suntharalingam & Lucas Fernández-Alcázar & Rodion Kononchuk & Tsampikos Kottos, 2023. "Noise resilient exceptional-point voltmeters enabled by oscillation quenching phenomena," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Adrià Canós Valero & Hadi K. Shamkhi & Anton S. Kupriianov & Thomas Weiss & Alexander A. Pavlov & Dmitrii Redka & Vjaceslavs Bobrovs & Yuri Kivshar & Alexander S. Shalin, 2023. "Superscattering emerging from the physics of bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Liao, Qinghong & Song, Menglin & Bao, Weida, 2023. "Generation of second-order sideband and slow-fast light effects in a PT-symmetric optomechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    15. Federico Roccati & Miguel Bello & Zongping Gong & Masahito Ueda & Francesco Ciccarello & Aurélia Chenu & Angelo Carollo, 2024. "Hermitian and non-Hermitian topology from photon-mediated interactions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Chen, Lei & Huang, Feifan & Wang, Hongteng & Huang, Linwei & Huang, Junhua & Liu, Gui-Shi & Chen, Yaofei & Luo, Yunhan & Chen, Zhe, 2022. "Non-Hermitian-enhanced topological protection of chaotic dynamics in one-dimensional optomechanics lattice," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Mudi Wang & Qiyun Ma & Shan Liu & Ruo-Yang Zhang & Lei Zhang & Manzhu Ke & Zhengyou Liu & C. T. Chan, 2022. "Observation of boundary induced chiral anomaly bulk states and their transport properties," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40236-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.