IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v583y2020i7818d10.1038_s41586-020-2342-5.html
   My bibliography  Save this article

Pathogenesis and transmission of SARS-CoV-2 in golden hamsters

Author

Listed:
  • Sin Fun Sia

    (The University of Hong Kong)

  • Li-Meng Yan

    (The University of Hong Kong)

  • Alex W. H. Chin

    (The University of Hong Kong)

  • Kevin Fung

    (The University of Hong Kong)

  • Ka-Tim Choy

    (The University of Hong Kong)

  • Alvina Y. L. Wong

    (The University of Hong Kong)

  • Prathanporn Kaewpreedee

    (The University of Hong Kong)

  • Ranawaka A. P. M. Perera

    (The University of Hong Kong)

  • Leo L. M. Poon

    (The University of Hong Kong)

  • John M. Nicholls

    (The University of Hong Kong)

  • Malik Peiris

    (The University of Hong Kong)

  • Hui-Ling Yen

    (The University of Hong Kong)

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6–7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.

Suggested Citation

  • Sin Fun Sia & Li-Meng Yan & Alex W. H. Chin & Kevin Fung & Ka-Tim Choy & Alvina Y. L. Wong & Prathanporn Kaewpreedee & Ranawaka A. P. M. Perera & Leo L. M. Poon & John M. Nicholls & Malik Peiris & Hui, 2020. "Pathogenesis and transmission of SARS-CoV-2 in golden hamsters," Nature, Nature, vol. 583(7818), pages 834-838, July.
  • Handle: RePEc:nat:nature:v:583:y:2020:i:7818:d:10.1038_s41586-020-2342-5
    DOI: 10.1038/s41586-020-2342-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2342-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2342-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Maria Cattelan & Lolita Sasset & Federico Zabeo & Anna Ferrari & Lucia Rossi & Maria Mazzitelli & Silvia Cocchio & Vincenzo Baldo, 2022. "Rapid Antigen Test LumiraDx TM vs. Real Time Polymerase Chain Reaction for the Diagnosis of SARS-CoV-2 Infection: A Retrospective Cohort Study," IJERPH, MDPI, vol. 19(7), pages 1-12, March.
    2. Federico Armando & Georg Beythien & Franziska K. Kaiser & Lisa Allnoch & Laura Heydemann & Malgorzata Rosiak & Svenja Becker & Mariana Gonzalez-Hernandez & Mart M. Lamers & Bart L. Haagmans & Kate Gui, 2022. "SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Cedric C. S. Tan & Su Datt Lam & Damien Richard & Christopher J. Owen & Dorothea Berchtold & Christine Orengo & Meera Surendran Nair & Suresh V. Kuchipudi & Vivek Kapur & Lucy van Dorp & François Ball, 2022. "Transmission of SARS-CoV-2 from humans to animals and potential host adaptation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Guilherme Dias de Melo & Victoire Perraud & Flavio Alvarez & Alba Vieites-Prado & Seonhee Kim & Lauriane Kergoat & Anthony Coleon & Bettina Salome Trüeb & Magali Tichit & Aurèle Piazza & Agnès Thierry, 2023. "Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Liang Zhang & Yao Jiang & Jinhang He & Junyu Chen & Ruoyao Qi & Lunzhi Yuan & Tiange Shao & Hui Zhao & Congjie Chen & Yaode Chen & Xijing Wang & Xing Lei & Qingxiang Gao & Chunlan Zhuang & Ming Zhou &, 2023. "Intranasal influenza-vectored COVID-19 vaccine restrains the SARS-CoV-2 inflammatory response in hamsters," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Magen E. Francis & Ethan B. Jansen & Anthony Yourkowski & Alaa Selim & Cynthia L. Swan & Brian K. MacPhee & Brittany Thivierge & Rachelle Buchanan & Kerry J. Lavender & Joseph Darbellay & Matthew B. R, 2023. "Previous infection with seasonal coronaviruses does not protect male Syrian hamsters from challenge with SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Laura Heydemann & Małgorzata Ciurkiewicz & Georg Beythien & Kathrin Becker & Klaus Schughart & Stephanie Stanelle-Bertram & Berfin Schaumburg & Nancy Mounogou-Kouassi & Sebastian Beck & Martin Zickler, 2023. "Hamster model for post-COVID-19 alveolar regeneration offers an opportunity to understand post-acute sequelae of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Julia M. Adler & Ricardo Martin Vidal & Christine Langner & Daria Vladimirova & Azza Abdelgawad & Daniela Kunecova & Xiaoyuan Lin & Geraldine Nouailles & Anne Voss & Sandra Kunder & Achim D. Gruber & , 2024. "An intranasal live-attenuated SARS-CoV-2 vaccine limits virus transmission," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Wen Juan Tu & Michelle Melino & Jenny Dunn & Robert D. McCuaig & Helle Bielefeldt-Ohmann & Sofiya Tsimbalyuk & Jade K. Forwood & Taniya Ahuja & John Vandermeide & Xiao Tan & Minh Tran & Quan Nguyen & , 2023. "In vivo inhibition of nuclear ACE2 translocation protects against SARS-CoV-2 replication and lung damage through epigenetic imprinting," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Ryuta Uraki & Shun Iida & Peter J. Halfmann & Seiya Yamayoshi & Yuichiro Hirata & Kiyoko Iwatsuki-Horimoto & Maki Kiso & Mutsumi Ito & Yuri Furusawa & Hiroshi Ueki & Yuko Sakai-Tagawa & Makoto Kuroda , 2023. "Characterization of SARS-CoV-2 Omicron BA.2.75 clinical isolates," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Dillon S. McBride & Sofya K. Garushyants & John Franks & Andrew F. Magee & Steven H. Overend & Devra Huey & Amanda M. Williams & Seth A. Faith & Ahmed Kandeil & Sanja Trifkovic & Lance Miller & Trusha, 2023. "Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Weizhong Li & Tao Wang & Arunraj M. Rajendrakumar & Gyanada Acharya & Zizhen Miao & Berin P. Varghese & Hailiang Yu & Bibek Dhakal & Tanya LeRoith & Athira Karunakaran & Wenbin Tuo & Xiaoping Zhu, 2023. "An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Kenrie P. Y. Hui & Alex W. H. Chin & John Ehret & Ka-Chun Ng & Malik Peiris & Leo L. M. Poon & Karen H. M. Wong & Michael C. W. Chan & Ian Hosegood & John M. Nicholls, 2023. "Stability of SARS-CoV-2 on Commercial Aircraft Interior Surfaces with Implications for Effective Control Measures," IJERPH, MDPI, vol. 20(16), pages 1-12, August.
    14. Dongsheng Chen & Jian Sun & Jiacheng Zhu & Xiangning Ding & Tianming Lan & Xiran Wang & Weiying Wu & Zhihua Ou & Linnan Zhu & Peiwen Ding & Haoyu Wang & Lihua Luo & Rong Xiang & Xiaoling Wang & Jiayin, 2021. "Single cell atlas for 11 non-model mammals, reptiles and birds," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    15. Zhenzhen Wang & Shiqi Hu & Kristen D. Popowski & Shuo Liu & Dashuai Zhu & Xuan Mei & Junlang Li & Yilan Hu & Phuong-Uyen C. Dinh & Xiaojie Wang & Ke Cheng, 2024. "Inhalation of ACE2-expressing lung exosomes provides prophylactic protection against SARS-CoV-2," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Julia T. Castro & Patrick Azevedo & Marcílio J. Fumagalli & Natalia S. Hojo-Souza & Natalia Salazar & Gregório G. Almeida & Livia I. Oliveira & Lídia Faustino & Lis R. Antonelli & Tomas G. Marçal & Ma, 2022. "Promotion of neutralizing antibody-independent immunity to wild-type and SARS-CoV-2 variants of concern using an RBD-Nucleocapsid fusion protein," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Sapna Sharma & Thomas Vercruysse & Lorena Sanchez-Felipe & Winnie Kerstens & Madina Rasulova & Lindsey Bervoets & Carolien Keyzer & Rana Abdelnabi & Caroline S. Foo & Viktor Lemmens & Dominique Loover, 2022. "Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Gi Uk Jeong & Hyung-Jun Kwon & Wern Hann Ng & Xiang Liu & Hyun Woo Moon & Gun Young Yoon & Hye Jin Shin & In-Chul Lee & Zheng Lung Ling & Alanna G. Spiteri & Nicholas J. C. King & Adam Taylor & Ji Soo, 2022. "Ocular tropism of SARS-CoV-2 in animal models with retinal inflammation via neuronal invasion following intranasal inoculation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Bruno A. Rodriguez-Rodriguez & Grace O. Ciabattoni & Ralf Duerr & Ana M. Valero-Jimenez & Stephen T. Yeung & Keaton M. Crosse & Austin R. Schinlever & Lucie Bernard-Raichon & Joaquin Rodriguez Galvan , 2023. "A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Juan Liu & Fengfeng Mao & Jianhe Chen & Shuaiyao Lu & Yonghe Qi & Yinyan Sun & Linqiang Fang & Man Lung Yeung & Chunmei Liu & Guimei Yu & Guangyu Li & Ximing Liu & Yuansheng Yao & Panpan Huang & Dongx, 2023. "An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    21. Carlos Ávila-Nieto & Júlia Vergara-Alert & Pep Amengual-Rigo & Erola Ainsua-Enrich & Marco Brustolin & María Luisa Rodríguez de la Concepción & Núria Pedreño-Lopez & Jordi Rodon & Victor Urrea & Edwar, 2024. "Immunization with V987H-stabilized Spike glycoprotein protects K18-hACE2 mice and golden Syrian hamsters upon SARS-CoV-2 infection," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    22. Matthew R. Chang & Luke Tomasovic & Natalia A. Kuzmina & Adam J. Ronk & Patrick O. Byrne & Rebecca Johnson & Nadia Storm & Eduardo Olmedillas & Yixuan J. Hou & Alexandra Schäfer & Sarah R. Leist & Lon, 2022. "IgG-like bispecific antibodies with potent and synergistic neutralization against circulating SARS-CoV-2 variants of concern," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:583:y:2020:i:7818:d:10.1038_s41586-020-2342-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.