IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v578y2020i7795d10.1038_s41586-019-1910-z.html
   My bibliography  Save this article

The structural basis for cohesin–CTCF-anchored loops

Author

Listed:
  • Yan Li

    (European Molecular Biology Laboratory)

  • Judith H. I. Haarhuis

    (The Netherlands Cancer Institute)

  • Ángela Sedeño Cacciatore

    (The Netherlands Cancer Institute)

  • Roel Oldenkamp

    (The Netherlands Cancer Institute)

  • Marjon S. Ruiten

    (The Netherlands Cancer Institute)

  • Laureen Willems

    (The Netherlands Cancer Institute)

  • Hans Teunissen

    (The Netherlands Cancer Institute)

  • Kyle W. Muir

    (European Molecular Biology Laboratory
    MRC Laboratory of Molecular Biology)

  • Elzo Wit

    (The Netherlands Cancer Institute)

  • Benjamin D. Rowland

    (The Netherlands Cancer Institute)

  • Daniel Panne

    (European Molecular Biology Laboratory
    University of Leicester)

Abstract

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2–SCC1 subunits of human cohesin. We report a crystal structure of SA2–SCC1 in complex with CTCF at a resolution of 2.7 Å, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL2,3. Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.

Suggested Citation

  • Yan Li & Judith H. I. Haarhuis & Ángela Sedeño Cacciatore & Roel Oldenkamp & Marjon S. Ruiten & Laureen Willems & Hans Teunissen & Kyle W. Muir & Elzo Wit & Benjamin D. Rowland & Daniel Panne, 2020. "The structural basis for cohesin–CTCF-anchored loops," Nature, Nature, vol. 578(7795), pages 472-476, February.
  • Handle: RePEc:nat:nature:v:578:y:2020:i:7795:d:10.1038_s41586-019-1910-z
    DOI: 10.1038/s41586-019-1910-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1910-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1910-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayantika Sen Gupta & Chris Seidel & Dai Tsuchiya & Sean McKinney & Zulin Yu & Sarah E. Smith & Jay R. Unruh & Jennifer L. Gerton, 2023. "Defining a core configuration for human centromeres during mitosis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Louisa Hill & Gordana Wutz & Markus Jaritz & Hiromi Tagoh & Lesly Calderón & Jan-Michael Peters & Anton Goloborodko & Meinrad Busslinger, 2023. "Igh and Igk loci use different folding principles for V gene recombination due to distinct chromosomal architectures of pro-B and pre-B cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Hye Ji Cha & Özgün Uyan & Yan Kai & Tianxin Liu & Qian Zhu & Zuzana Tothova & Giovanni A. Botten & Jian Xu & Guo-Cheng Yuan & Job Dekker & Stuart H. Orkin, 2021. "Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    5. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Dácil Alonso-Gil & Ana Cuadrado & Daniel Giménez-Llorente & Miriam Rodríguez-Corsino & Ana Losada, 2023. "Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Shuai Liu & Yaqiang Cao & Kairong Cui & Qingsong Tang & Keji Zhao, 2022. "Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:578:y:2020:i:7795:d:10.1038_s41586-019-1910-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.