IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37583-w.html
   My bibliography  Save this article

DNA double-strand break end synapsis by DNA loop extrusion

Author

Listed:
  • Jin H. Yang

    (Massachusetts Institute of Technology
    The Broad Institute of MIT and Harvard
    Koch Institute for Integrative Cancer Research)

  • Hugo B. Brandão

    (Massachusetts Institute of Technology
    The Broad Institute of MIT and Harvard
    Koch Institute for Integrative Cancer Research
    Illumina Inc.)

  • Anders S. Hansen

    (Massachusetts Institute of Technology
    The Broad Institute of MIT and Harvard
    Koch Institute for Integrative Cancer Research)

Abstract

DNA double-strand breaks (DSBs) occur every cell cycle and must be efficiently repaired. Non-homologous end joining (NHEJ) is the dominant pathway for DSB repair in G1-phase. The first step of NHEJ is to bring the two DSB ends back into proximity (synapsis). Although synapsis is generally assumed to occur through passive diffusion, we show that passive diffusion is unlikely to produce the synapsis speed observed in cells. Instead, we hypothesize that DNA loop extrusion facilitates synapsis. By combining experimentally constrained simulations and theory, we show that a simple loop extrusion model constrained by previous live-cell imaging data only modestly accelerates synapsis. Instead, an expanded loop extrusion model with targeted loading of loop extruding factors (LEFs), a small portion of long-lived LEFs, and LEF stabilization by boundary elements and DSB ends achieves fast synapsis with near 100% efficiency. We propose that loop extrusion contributes to DSB repair by mediating fast synapsis.

Suggested Citation

  • Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37583-w
    DOI: 10.1038/s41467-023-37583-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37583-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37583-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick L. Collins & Caitlin Purman & Sofia I. Porter & Vincent Nganga & Ankita Saini & Katharina E. Hayer & Greer L. Gurewitz & Barry P. Sleckman & Jeffrey J. Bednarski & Craig H. Bassing & Eugene M., 2020. "DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Hai-Qiang Dai & Hongli Hu & Jiangman Lou & Adam Yongxin Ye & Zhaoqing Ba & Xuefei Zhang & Yiwen Zhang & Lijuan Zhao & Hye Suk Yoon & Aimee M. Chapdelaine-Williams & Nia Kyritsis & Huan Chen & Kerstin , 2021. "Loop extrusion mediates physiological Igh locus contraction for RAG scanning," Nature, Nature, vol. 590(7845), pages 338-343, February.
    3. Armelle Lengronne & Yuki Katou & Saori Mori & Shihori Yokobayashi & Gavin P. Kelly & Takehiko Itoh & Yoshinori Watanabe & Katsuhiko Shirahige & Frank Uhlmann, 2004. "Cohesin relocation from sites of chromosomal loading to places of convergent transcription," Nature, Nature, vol. 430(6999), pages 573-578, July.
    4. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    5. Bailin Zhao & Go Watanabe & Michael J. Morten & Dylan A. Reid & Eli Rothenberg & Michael R. Lieber, 2019. "The essential elements for the noncovalent association of two DNA ends during NHEJ synapsis," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    6. Yu Zhang & Xuefei Zhang & Zhaoqing Ba & Zhuoyi Liang & Edward W. Dring & Hongli Hu & Jiangman Lou & Nia Kyritsis & Jeffrey Zurita & Muhammad S. Shamim & Aviva Presser Aiden & Erez Lieberman Aiden & Fr, 2019. "The fundamental role of chromatin loop extrusion in physiological V(D)J recombination," Nature, Nature, vol. 573(7775), pages 600-604, September.
    7. Fena Ochs & Gopal Karemore & Ezequiel Miron & Jill Brown & Hana Sedlackova & Maj-Britt Rask & Marko Lampe & Veronica Buckle & Lothar Schermelleh & Jiri Lukas & Claudia Lukas, 2019. "Stabilization of chromatin topology safeguards genome integrity," Nature, Nature, vol. 574(7779), pages 571-574, October.
    8. Yixiao Gong & Charalampos Lazaris & Theodore Sakellaropoulos & Aurelie Lozano & Prabhanjan Kambadur & Panagiotis Ntziachristos & Iannis Aifantis & Aristotelis Tsirigos, 2018. "Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    9. Xuefei Zhang & Yu Zhang & Zhaoqing Ba & Nia Kyritsis & Rafael Casellas & Frederick W. Alt, 2019. "Fundamental roles of chromatin loop extrusion in antibody class switching," Nature, Nature, vol. 575(7782), pages 385-389, November.
    10. Lei Zhang & Xinran Geng & Fangfang Wang & Jinshan Tang & Yu Ichida & Arishya Sharma & Sora Jin & Mingyue Chen & Mingliang Tang & Franklin Mayca Pozo & Wenxiu Wang & Janet Wang & Michal Wozniak & Xiaox, 2022. "Author Correction: 53BP1 regulates heterochromatin through liquid phase separation," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    11. Siyu Chen & Linda Lee & Tasmin Naila & Susan Fishbain & Annie Wang & Alan E. Tomkinson & Susan P. Lees-Miller & Yuan He, 2021. "Structural basis of long-range to short-range synaptic transition in NHEJ," Nature, Nature, vol. 593(7858), pages 294-298, May.
    12. Coline Arnould & Vincent Rocher & Anne-Laure Finoux & Thomas Clouaire & Kevin Li & Felix Zhou & Pierre Caron & Philippe. E. Mangeot & Emiliano P. Ricci & Raphaël Mourad & James E. Haber & Daan Noorder, 2021. "Loop extrusion as a mechanism for formation of DNA damage repair foci," Nature, Nature, vol. 590(7847), pages 660-665, February.
    13. Eugene Kim & Jacob Kerssemakers & Indra A. Shaltiel & Christian H. Haering & Cees Dekker, 2020. "DNA-loop extruding condensin complexes can traverse one another," Nature, Nature, vol. 579(7799), pages 438-442, March.
    14. Nadya Dimitrova & Yi-Chun M. Chen & David L. Spector & Titia de Lange, 2008. "53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility," Nature, Nature, vol. 456(7221), pages 524-528, November.
    15. Yan Li & Judith H. I. Haarhuis & Ángela Sedeño Cacciatore & Roel Oldenkamp & Marjon S. Ruiten & Laureen Willems & Hans Teunissen & Kyle W. Muir & Elzo Wit & Benjamin D. Rowland & Daniel Panne, 2020. "The structural basis for cohesin–CTCF-anchored loops," Nature, Nature, vol. 578(7795), pages 472-476, February.
    16. Lei Zhang & Xinran Geng & Fangfang Wang & Jinshan Tang & Yu Ichida & Arishya Sharma & Sora Jin & Mingyue Chen & Mingliang Tang & Franklin Mayca Pozo & Wenxiu Wang & Janet Wang & Michal Wozniak & Xiaox, 2022. "53BP1 regulates heterochromatin through liquid phase separation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    18. Ineke Brouwer & Gerrit Sitters & Andrea Candelli & Stephanie J. Heerema & Iddo Heller & Abinadabe J. Melo de & Hongshan Zhang & Davide Normanno & Mauro Modesti & Erwin J. G. Peterman & Gijs J. L. Wuit, 2016. "Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA," Nature, Nature, vol. 535(7613), pages 566-569, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louisa Hill & Gordana Wutz & Markus Jaritz & Hiromi Tagoh & Lesly Calderón & Jan-Michael Peters & Anton Goloborodko & Meinrad Busslinger, 2023. "Igh and Igk loci use different folding principles for V gene recombination due to distinct chromosomal architectures of pro-B and pre-B cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Shuai Liu & Yaqiang Cao & Kairong Cui & Qingsong Tang & Keji Zhao, 2022. "Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Khalid H. Bhat & Saurabh Priyadarshi & Sarah Naiyer & Xinyan Qu & Hammad Farooq & Eden Kleiman & Jeffery Xu & Xue Lei & Jose F. Cantillo & Robert Wuerffel & Nicole Baumgarth & Jie Liang & Ann J. Feene, 2023. "An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Estelle Vincendeau & Wenming Wei & Xuefei Zhang & Cyril Planchais & Wei Yu & Hélène Lenden-Hasse & Thomas Cokelaer & Juliana Pipoli da Fonseca & Hugo Mouquet & David J. Adams & Frederick W. Alt & Step, 2022. "SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Claire Marchal & Nivedita Singh & Zachary Batz & Jayshree Advani & Catherine Jaeger & Ximena Corso-Díaz & Anand Swaroop, 2022. "High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Dácil Alonso-Gil & Ana Cuadrado & Daniel Giménez-Llorente & Miriam Rodríguez-Corsino & Ana Losada, 2023. "Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Olivier Messina & Flavien Raynal & Julian Gurgo & Jean-Bernard Fiche & Vera Pancaldi & Marcelo Nollmann, 2023. "3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Metztli Cisneros-Aguirre & Felicia Wednesday Lopezcolorado & Linda Jillianne Tsai & Ragini Bhargava & Jeremy M. Stark, 2022. "The importance of DNAPKcs for blunt DNA end joining is magnified when XLF is weakened," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Georgii Pobegalov & Lee-Ya Chu & Jan-Michael Peters & Maxim I. Molodtsov, 2023. "Single cohesin molecules generate force by two distinct mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Dongmei Wang & Tao Sun & Yuan Xia & Zhe Zhao & Xue Sheng & Shuying Li & Yuechan Ma & Mingying Li & Xiuhua Su & Fan Zhang & Peng Li & Daoxin Ma & Jingjing Ye & Fei Lu & Chunyan Ji, 2023. "Homodimer-mediated phosphorylation of C/EBPα-p42 S16 modulates acute myeloid leukaemia differentiation through liquid-liquid phase separation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Ryota Takaki & Atreya Dey & Guang Shi & D. Thirumalai, 2021. "Theory and simulations of condensin mediated loop extrusion in DNA," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Xiao Ge & Haiyan Huang & Keqi Han & Wangjie Xu & Zhaoxia Wang & Qiang Wu, 2023. "Outward-oriented sites within clustered CTCF boundaries are key for intra-TAD chromatin interactions and gene regulation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Xin Li & Sheng Wang & Ying Xie & Hongmei Jiang & Jing Guo & Yixuan Wang & Ziyi Peng & Meilin Hu & Mengqi Wang & Jingya Wang & Qian Li & Yafei Wang & Zhiqiang Liu, 2023. "Deacetylation induced nuclear condensation of HP1γ promotes multiple myeloma drug resistance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Benjamin M. Stinson & Sean M. Carney & Johannes C. Walter & Joseph J. Loparo, 2024. "Structural role for DNA Ligase IV in promoting the fidelity of non-homologous end joining," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Bhuwan Khatri & Kandice L. Tessneer & Astrid Rasmussen & Farhang Aghakhanian & Tove Ragna Reksten & Adam Adler & Ilias Alevizos & Juan-Manuel Anaya & Lara A. Aqrawi & Eva Baecklund & Johan G. Brun & S, 2022. "Genome-wide association study identifies Sjögren’s risk loci with functional implications in immune and glandular cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Liyuan Zhou & Qiongzi Qiu & Qing Zhou & Jianwei Li & Mengqian Yu & Kezhen Li & Lingling Xu & Xiaohui Ke & Haiming Xu & Bingjian Lu & Hui Wang & Weiguo Lu & Pengyuan Liu & Yan Lu, 2022. "Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Andreas Mardt & Tim Hempel & Cecilia Clementi & Frank Noé, 2022. "Deep learning to decompose macromolecules into independent Markovian domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37583-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.