IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v576y2019i7787d10.1038_s41586-019-1827-6.html
   My bibliography  Save this article

Probing the critical nucleus size for ice formation with graphene oxide nanosheets

Author

Listed:
  • Guoying Bai

    (Chinese Academy of Sciences
    Hebei University of Technology)

  • Dong Gao

    (Hebei University of Technology)

  • Zhang Liu

    (Chinese Academy of Sciences)

  • Xin Zhou

    (University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Jianjun Wang

    (Chinese Academy of Sciences
    Songshan Lake Materials Laboratory
    University of Chinese Academy of Sciences)

Abstract

Water freezing is ubiquitous and affects areas as diverse as climate, the chemical industry, cryobiology and materials science. Ice nucleation is the controlling step in water freezing1–5 and has, for nearly a century, been assumed to require the formation of a critical ice nucleus6–10. But there has been no direct experimental evidence for the existence of such a nucleus, owing to its transient and nanoscale nature6,7. Here we report ice nucleation in water droplets containing graphene oxide nanosheets of controlled sizes and show that they have a notable impact on ice nucleation only above a certain size that varies with the degree of supercooling of the droplets. We infer from our experimental data and theoretical calculations that the critical size of the graphene oxide reflects the size of the critical ice nucleus, which in the case of sufficiently large graphene oxides sits on their surface and gives rise to ice formation behaviour consistent with classical nucleation theory. By contrast, when the graphene oxide size is smaller than that of the critical ice nucleus, pinning at the periphery of the graphene oxide deforms the ice nucleus as it grows. This gives rise to a much higher free-energy barrier for nucleation and suppresses the promoting effect of the graphene oxide11. The results provide experimental information on the existence and temperature-dependent size of the critical ice nucleus, which has previously only been explored theoretically and through simulations12–16. As pinning of a pre-critical nucleus at a nanoparticle edge is not specific to the ice nucleus on graphene oxides, we expect that our approach could be extended to probe the critical nuclei in other nucleation processes.

Suggested Citation

  • Guoying Bai & Dong Gao & Zhang Liu & Xin Zhou & Jianjun Wang, 2019. "Probing the critical nucleus size for ice formation with graphene oxide nanosheets," Nature, Nature, vol. 576(7787), pages 437-441, December.
  • Handle: RePEc:nat:nature:v:576:y:2019:i:7787:d:10.1038_s41586-019-1827-6
    DOI: 10.1038/s41586-019-1827-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1827-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1827-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Conghui Tian & Lingxiao Shen & Chenjia Gong & Yunxia Cao & Qinghua Shi & Gang Zhao, 2022. "Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Meng Li & Nifang Zhao & Anran Mao & Mengning Wang & Ziyu Shao & Weiwei Gao & Hao Bai, 2023. "Preferential ice growth on grooved surface for crisscross-aligned graphene aerogel with large negative Poisson’s ratio," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Minyoung Lee & Sang Yup Lee & Min-Ho Kang & Tae Kyung Won & Sungsu Kang & Joodeok Kim & Jungwon Park & Dong June Ahn, 2024. "Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Fuqiang Chu & Shuxin Li & Canjun Zhao & Yanhui Feng & Yukai Lin & Xiaomin Wu & Xiao Yan & Nenad Miljkovic, 2024. "Interfacial ice sprouting during salty water droplet freezing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    8. Sang Yup Lee & Minseong Kim & Tae Kyung Won & Seung Hyuk Back & Youngjoo Hong & Byeong-Su Kim & Dong June Ahn, 2022. "Janus regulation of ice growth by hyperbranched polyglycerols generating dynamic hydrogen bonding," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:576:y:2019:i:7787:d:10.1038_s41586-019-1827-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.