IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v571y2019i7765d10.1038_s41586-019-1385-y.html
   My bibliography  Save this article

Comprehensive single-cell transcriptome lineages of a proto-vertebrate

Author

Listed:
  • Chen Cao

    (Princeton University)

  • Laurence A. Lemaire

    (Princeton University)

  • Wei Wang

    (Stowers Institute for Medical Research)

  • Peter H. Yoon

    (Princeton University)

  • Yoolim A. Choi

    (Princeton University)

  • Lance R. Parsons

    (Princeton University)

  • John C. Matese

    (Princeton University)

  • Wei Wang

    (Princeton University)

  • Michael Levine

    (Princeton University
    Princeton University)

  • Kai Chen

    (Princeton University
    Kunming University of Science and Technology)

Abstract

Ascidian embryos highlight the importance of cell lineages in animal development. As simple proto-vertebrates, they also provide insights into the evolutionary origins of cell types such as cranial placodes and neural crest cells. Here we have determined single-cell transcriptomes for more than 90,000 cells that span the entirety of development—from the onset of gastrulation to swimming tadpoles—in Ciona intestinalis. Owing to the small numbers of cells in ascidian embryos, this represents an average of over 12-fold coverage for every cell at every stage of development. We used single-cell transcriptome trajectories to construct virtual cell-lineage maps and provisional gene networks for 41 neural subtypes that comprise the larval nervous system. We summarize several applications of these datasets, including annotating the synaptome of swimming tadpoles and tracing the evolutionary origin of cell types such as the vertebrate telencephalon.

Suggested Citation

  • Chen Cao & Laurence A. Lemaire & Wei Wang & Peter H. Yoon & Yoolim A. Choi & Lance R. Parsons & John C. Matese & Wei Wang & Michael Levine & Kai Chen, 2019. "Comprehensive single-cell transcriptome lineages of a proto-vertebrate," Nature, Nature, vol. 571(7765), pages 349-354, July.
  • Handle: RePEc:nat:nature:v:571:y:2019:i:7765:d:10.1038_s41586-019-1385-y
    DOI: 10.1038/s41586-019-1385-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1385-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1385-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Liao & Lifeng Ma & Qile Guo & Weigao E & Xing Fang & Lei Yang & Fanwei Ruan & Jingjing Wang & Peijing Zhang & Zhongyi Sun & Haide Chen & Zhongliang Lin & Xueyi Wang & Xinru Wang & Huiyu Sun & Xiu, 2022. "Cell landscape of larval and adult Xenopus laevis at single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Martin Arostegui & R. Wilder Scott & Kerstin Böse & T. Michael Underhill, 2022. "Cellular taxonomy of Hic1+ mesenchymal progenitor derivatives in the limb: from embryo to adult," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Md Tauhidul Islam & Lei Xing, 2023. "Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Toshio Sekiguchi & Hiroshi Akitaya & Satoshi Nakayama & Takashi Yazawa & Michio Ogasawara & Nobuo Suzuki & Kazuichi Hayakawa & Shuichi Wada, 2020. "Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A," IJERPH, MDPI, vol. 17(4), pages 1-11, February.
    5. Jiankai Wei & Wei Zhang & An Jiang & Hongzhe Peng & Quanyong Zhang & Yuting Li & Jianqing Bi & Linting Wang & Penghui Liu & Jing Wang & Yonghang Ge & Liya Zhang & Haiyan Yu & Lei Li & Shi Wang & Liang, 2024. "Temporospatial hierarchy and allele-specific expression of zygotic genome activation revealed by distant interspecific urochordate hybrids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Shixuan Liu & Camille Ezran & Michael F. Z. Wang & Zhengda Li & Kyle Awayan & Jonathan Z. Long & Iwijn De Vlaminck & Sheng Wang & Jacques Epelbaum & Christin S. Kuo & Jérémy Terrien & Mark A. Krasnow , 2024. "An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome," Nature Communications, Nature, vol. 15(1), pages 1-27, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:571:y:2019:i:7765:d:10.1038_s41586-019-1385-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.