IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v529y2016i7585d10.1038_nature16161.html
   My bibliography  Save this article

Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit

Author

Listed:
  • Jakob von Moltke

    (University of California San Francisco)

  • Ming Ji

    (University of California San Francisco
    Howard Hughes Medical Institute, University of California San Francisco)

  • Hong-Erh Liang

    (University of California San Francisco)

  • Richard M. Locksley

    (University of California San Francisco
    Howard Hughes Medical Institute, University of California San Francisco
    University of California San Francisco)

Abstract

Epithelial tuft cells are shown to be the source of intestinal interleukin (IL)-25 that is required for activation of type 2 innate lymphoid cells (ILC2s), ILC2-regulated tuft and goblet cell expansion, and control of parasite infection.

Suggested Citation

  • Jakob von Moltke & Ming Ji & Hong-Erh Liang & Richard M. Locksley, 2016. "Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit," Nature, Nature, vol. 529(7585), pages 221-225, January.
  • Handle: RePEc:nat:nature:v:529:y:2016:i:7585:d:10.1038_nature16161
    DOI: 10.1038/nature16161
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature16161
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature16161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryan N. O’Keefe & Annalisa L. E. Carli & David Baloyan & David Chisanga & Wei Shi & Shoukat Afshar-Sterle & Moritz F. Eissmann & Ashleigh R. Poh & Bhupinder Pal & Cyril Seillet & Richard M. Locksley &, 2023. "A tuft cell - ILC2 signaling circuit provides therapeutic targets to inhibit gastric metaplasia and tumor development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Omid Omrani & Anna Krepelova & Seyed Mohammad Mahdi Rasa & Dovydas Sirvinskas & Jing Lu & Francesco Annunziata & George Garside & Seerat Bajwa & Susanne Reinhardt & Lisa Adam & Sandra Käppel & Nadia D, 2023. "IFNγ-Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Xiwen Xiong & Chenyan Yang & Wei-Qi He & Jiahui Yu & Yue Xin & Xinge Zhang & Rong Huang & Honghui Ma & Shaofang Xu & Zun Li & Jie Ma & Lin Xu & Qunyi Wang & Kaiqun Ren & Xiaoli S. Wu & Christopher R. , 2022. "Sirtuin 6 maintains epithelial STAT6 activity to support intestinal tuft cell development and type 2 immunity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Ihab Ansari & Llorenç Solé-Boldo & Meshi Ridnik & Julian Gutekunst & Oliver Gilliam & Maria Korshko & Timur Liwinski & Birgit Jickeli & Noa Weinberg-Corem & Michal Shoshkes-Carmel & Eli Pikarsky & Era, 2023. "TET2 and TET3 loss disrupts small intestine differentiation and homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Alberto Díez-Sánchez & Håvard T. Lindholm & Pia M. Vornewald & Jenny Ostrop & Rouan Yao & Andrew B. Single & Anne Marstad & Naveen Parmar & Tovah N. Shaw & Mara Martín-Alonso & Menno J. Oudhoff, 2024. "LSD1 drives intestinal epithelial maturation and controls small intestinal immune cell composition independent of microbiota in a murine model," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:529:y:2016:i:7585:d:10.1038_nature16161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.