IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v513y2014i7517d10.1038_nature13724.html
   My bibliography  Save this article

A synaptic and circuit basis for corollary discharge in the auditory cortex

Author

Listed:
  • David M. Schneider

    (Duke University School of Medicine)

  • Anders Nelson

    (Duke University School of Medicine)

  • Richard Mooney

    (Duke University School of Medicine)

Abstract

Sensory regions of the brain integrate environmental cues with copies of motor-related signals important for imminent and ongoing movements. In mammals, signals propagating from the motor cortex to the auditory cortex are thought to have a critical role in normal hearing and behaviour, yet the synaptic and circuit mechanisms by which these motor-related signals influence auditory cortical activity remain poorly understood. Using in vivo intracellular recordings in behaving mice, we find that excitatory neurons in the auditory cortex are suppressed before and during movement, owing in part to increased activity of local parvalbumin-positive interneurons. Electrophysiology and optogenetic gain- and loss-of-function experiments reveal that motor-related changes in auditory cortical dynamics are driven by a subset of neurons in the secondary motor cortex that innervate the auditory cortex and are active during movement. These findings provide a synaptic and circuit basis for the motor-related corollary discharge hypothesized to facilitate hearing and auditory-guided behaviours.

Suggested Citation

  • David M. Schneider & Anders Nelson & Richard Mooney, 2014. "A synaptic and circuit basis for corollary discharge in the auditory cortex," Nature, Nature, vol. 513(7517), pages 189-194, September.
  • Handle: RePEc:nat:nature:v:513:y:2014:i:7517:d:10.1038_nature13724
    DOI: 10.1038/nature13724
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13724
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evan S. Schaffer & Neeli Mishra & Matthew R. Whiteway & Wenze Li & Michelle B. Vancura & Jason Freedman & Kripa B. Patel & Venkatakaushik Voleti & Liam Paninski & Elizabeth M. C. Hillman & L. F. Abbot, 2023. "The spatial and temporal structure of neural activity across the fly brain," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Francisco García-Rosales & Luciana López-Jury & Eugenia González-Palomares & Johannes Wetekam & Yuranny Cabral-Calderín & Ava Kiai & Manfred Kössl & Julio C. Hechavarría, 2022. "Echolocation-related reversal of information flow in a cortical vocalization network," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Roberto de la Torre-Martinez & Maya Ketzef & Gilad Silberberg, 2023. "Ongoing movement controls sensory integration in the dorsolateral striatum," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Christopher F. Angeloni & Wiktor Młynarski & Eugenio Piasini & Aaron M. Williams & Katherine C. Wood & Linda Garami & Ann M. Hermundstad & Maria N. Geffen, 2023. "Dynamics of cortical contrast adaptation predict perception of signals in noise," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Brian P. Rummell & Solmaz Bikas & Susanne S. Babl & Joseph A. Gogos & Torfi Sigurdsson, 2023. "Altered corollary discharge signaling in the auditory cortex of a mouse model of schizophrenia predisposition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Bartul Mimica & Tuçe Tombaz & Claudia Battistin & Jingyi Guo Fuglstad & Benjamin A. Dunn & Jonathan R. Whitlock, 2023. "Behavioral decomposition reveals rich encoding structure employed across neocortex in rats," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:513:y:2014:i:7517:d:10.1038_nature13724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.