IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v493y2013i7433d10.1038_nature11703.html
   My bibliography  Save this article

Stable creeping fault segments can become destructive as a result of dynamic weakening

Author

Listed:
  • Hiroyuki Noda

    (Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, 236-0001, Japan)

  • Nadia Lapusta

    (Division of Geological and Planetary Sciences
    California Institute of Technology)

Abstract

An earthquake source model in which stable, rate-strengthening behaviour at low slip rates is combined with coseismic weakening due to rapid shear heating of pore fluids, allowing unstable slip to occur in segments that can creep between events, explains a number of both long-term and coseismic observations of faults that hosted the 2011 Tohoku-Oki earthquake and the 1999 Chi-Chi earthquake.

Suggested Citation

  • Hiroyuki Noda & Nadia Lapusta, 2013. "Stable creeping fault segments can become destructive as a result of dynamic weakening," Nature, Nature, vol. 493(7433), pages 518-521, January.
  • Handle: RePEc:nat:nature:v:493:y:2013:i:7433:d:10.1038_nature11703
    DOI: 10.1038/nature11703
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11703
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Zhao & Roland Bürgmann & Dongzhen Wang & Jian Zhang & Jiansheng Yu & Qi Li, 2022. "Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Lu Yao & Shengli Ma & Giulio Di Toro, 2023. "Coseismic fault sealing and fluid pressurization during earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Dawei Gao & Kelin Wang & Tania L. Insua & Matthew Sypus & Michael Riedel & Tianhaozhe Sun, 2018. "Defining megathrust tsunami source scenarios for northernmost Cascadia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 445-469, October.
    4. Kai Zhang & Yanru Wang & Yu Luo & Dineng Zhao & Mingwei Wang & Fanlin Yang & Ziyin Wu, 2023. "Complex tsunamigenic near-trench seafloor deformation during the 2011 Tohoku–Oki earthquake," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:493:y:2013:i:7433:d:10.1038_nature11703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.