IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v440y2006i7087d10.1038_nature04679.html
   My bibliography  Save this article

Climate sensitivity constrained by temperature reconstructions over the past seven centuries

Author

Listed:
  • Gabriele C. Hegerl

    (Duke University)

  • Thomas J. Crowley

    (Duke University)

  • William T. Hyde

    (Duke University)

  • David J. Frame

    (University of Oxford)

Abstract

Back to the future The scale of any future global warming will depend on the sensitivity of the climate system to changes in greenhouse gas concentrations. Past climate is a useful guide to future events and now a new estimate of climate sensitivity, based on reconstructions of Northern Hemisphere temperature in the pre-industrial period 1270–1850, provides the best guide yet. It was thought that the upper limit of climate sensitivity (global mean temperature change due to CO2 doubling) was between 7.7 °C and above 9 °C. But the new model suggests a small probability that climate sensitivity will exceed 6.2 °C.

Suggested Citation

  • Gabriele C. Hegerl & Thomas J. Crowley & William T. Hyde & David J. Frame, 2006. "Climate sensitivity constrained by temperature reconstructions over the past seven centuries," Nature, Nature, vol. 440(7087), pages 1029-1032, April.
  • Handle: RePEc:nat:nature:v:440:y:2006:i:7087:d:10.1038_nature04679
    DOI: 10.1038/nature04679
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04679
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    2. Bosetti, Valentina & Golub, Alexander & Markandya, Anil & Massetti, Emanuele & Tavoni, Massimo, "undated". "Abatement Cost Uncertainty and Policy Instrument Selection under a Stringent Climate Policy. A Dynamic Analysis," Climate Change Modelling and Policy Working Papers 6383, Fondazione Eni Enrico Mattei (FEEM).
    3. Jianfu Han & Yuda Yang, 2021. "The socioeconomic effects of extreme drought events in northern China on the Ming dynasty in the late fifteenth century," Climatic Change, Springer, vol. 164(3), pages 1-17, February.
    4. de Area Leão Pereira, Eder Johnson & de Santana Ribeiro, Luiz Carlos & da Silva Freitas, Lúcio Flávio & de Barros Pereira, Hernane Borges, 2020. "Brazilian policy and agribusiness damage the Amazon rainforest," Land Use Policy, Elsevier, vol. 92(C).
    5. Katsumasa Tanaka & Richard S.J. Tol & Dmitry Rokityanskiy & Brian C. O'Neill & Michael Obersteiner, 2006. "Evaluating Global Warming Potentials as Historical Temperature Proxies: an application of ACC2 Inverse Calculation," Working Papers FNU-118, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2006.
    6. Kelsey L. Ruckert & Yawen Guan & Alexander M. R. Bakker & Chris E. Forest & Klaus Keller, 2017. "The effects of time-varying observation errors on semi-empirical sea-level projections," Climatic Change, Springer, vol. 140(3), pages 349-360, February.
    7. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    8. BRECHET, Thierry & THENIE, Julien & ZEIMES, Thibaut & ZUBER, Stéphane, 2010. "The benefits of cooperation under uncertainty: the case of climate change," LIDAM Discussion Papers CORE 2010062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. S. Ollinger & C. Goodale & K. Hayhoe & J. Jenkins, 2008. "Potential effects of climate change and rising CO 2 on ecosystem processes in northeastern U.S. forests," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 467-485, June.
    10. Gazeaux, Julien & Batista, Deborah & Ammann, Caspar M. & Naveau, Philippe & Jégat, Cyrille & Gao, Chaochao, 2013. "Extracting common pulse-like signals from multiple ice core time series," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 45-57.
    11. Stephan Lewandowsky & James Risbey & Michael Smithson & Ben Newell & John Hunter, 2014. "Scientific uncertainty and climate change: Part I. Uncertainty and unabated emissions," Climatic Change, Springer, vol. 124(1), pages 21-37, May.
    12. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    13. Ronan Connolly & Michael Connolly & Robert M. Carter & Willie Soon, 2020. "How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment," Energies, MDPI, vol. 13(6), pages 1-51, March.
    14. James Risbey & Terence O’Kane, 2011. "Sources of knowledge and ignorance in climate research," Climatic Change, Springer, vol. 108(4), pages 755-773, October.
    15. Salvador Pueyo, 2012. "Solution to the paradox of climate sensitivity," Climatic Change, Springer, vol. 113(2), pages 163-179, July.
    16. Alexis Hannart & Michael Ghil & Jean-Louis Dufresne & Philippe Naveau, 2013. "Disconcerting learning on climate sensitivity and the uncertain future of uncertainty," Climatic Change, Springer, vol. 119(3), pages 585-601, August.
    17. Alexandra Jonko & Nathan M. Urban & Balu Nadiga, 2018. "Towards Bayesian hierarchical inference of equilibrium climate sensitivity from a combination of CMIP5 climate models and observational data," Climatic Change, Springer, vol. 149(2), pages 247-260, July.
    18. Joëlle Gergis & Ailie Gallant & Karl Braganza & David Karoly & Kathryn Allen & Louise Cullen & Rosanne D’Arrigo & Ian Goodwin & Pauline Grierson & Shayne McGregor, 2012. "On the long-term context of the 1997–2009 ‘Big Dry’ in South-Eastern Australia: insights from a 206-year multi-proxy rainfall reconstruction," Climatic Change, Springer, vol. 111(3), pages 923-944, April.
    19. Felipe Macías & Marta Camps Arbestain, 2010. "Soil carbon sequestration in a changing global environment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(6), pages 511-529, August.
    20. Jingyun Zheng & Lingbo Xiao & Xiuqi Fang & Zhixin Hao & Quansheng Ge & Beibei Li, 2014. "How climate change impacted the collapse of the Ming dynasty," Climatic Change, Springer, vol. 127(2), pages 169-182, November.
    21. Michel, David, 2009. "Foxes, hedgehogs, and greenhouse governance: Knowledge, uncertainty, and international policy-making in a warming World," Applied Energy, Elsevier, vol. 86(2), pages 258-264, February.
    22. Stephen Newbold & Adam Daigneault, 2009. "Climate Response Uncertainty and the Benefits of Greenhouse Gas Emissions Reductions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(3), pages 351-377, November.
    23. J. Annan & J. Hargreaves, 2011. "On the generation and interpretation of probabilistic estimates of climate sensitivity," Climatic Change, Springer, vol. 104(3), pages 423-436, February.
    24. Minh Ha-Duong, 2008. "Hierarchical fusion of expert opinion in the Transferable Belief Model, application on climate sensitivity," Post-Print halshs-00112129, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:440:y:2006:i:7087:d:10.1038_nature04679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.