IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v434y2005i7030d10.1038_nature03347.html
   My bibliography  Save this article

Experimental one-way quantum computing

Author

Listed:
  • P. Walther

    (University of Vienna)

  • K. J. Resch

    (University of Vienna)

  • T. Rudolph

    (Imperial College London)

  • E. Schenck

    (University of Vienna
    Ecole normale supérieure)

  • H. Weinfurter

    (Ludwig Maximilians University
    Max Planck Institute for Quantum Optics)

  • V. Vedral

    (University of Vienna
    The Erwin Schrödinger Institute for Mathematical Physics
    University of Leeds)

  • M. Aspelmeyer

    (University of Vienna)

  • A. Zeilinger

    (University of Vienna
    IQOQI, Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences)

Abstract

Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

Suggested Citation

  • P. Walther & K. J. Resch & T. Rudolph & E. Schenck & H. Weinfurter & V. Vedral & M. Aspelmeyer & A. Zeilinger, 2005. "Experimental one-way quantum computing," Nature, Nature, vol. 434(7030), pages 169-176, March.
  • Handle: RePEc:nat:nature:v:434:y:2005:i:7030:d:10.1038_nature03347
    DOI: 10.1038/nature03347
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03347
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kui An & Zilei Liu & Ting Zhang & Siqi Li & You Zhou & Xiao Yuan & Leiran Wang & Wenfu Zhang & Guoxi Wang & He Lu, 2024. "Efficient characterizations of multiphoton states with an ultra-thin optical device," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Shuai Shi & Biao Xu & Kuan Zhang & Gen-Sheng Ye & De-Sheng Xiang & Yubao Liu & Jingzhi Wang & Daiqin Su & Lin Li, 2022. "High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Kunze Lu & Manlin Luo & Weibo Gao & Qi Jie Wang & Hao Sun & Donguk Nam, 2023. "Strong second-harmonic generation by sublattice polarization in non-uniformly strained monolayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Michael Hollenbach & Nico Klingner & Nagesh S. Jagtap & Lothar Bischoff & Ciarán Fowley & Ulrich Kentsch & Gregor Hlawacek & Artur Erbe & Nikolay V. Abrosimov & Manfred Helm & Yonder Berencén & Georgy, 2022. "Wafer-scale nanofabrication of telecom single-photon emitters in silicon," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Feng, Changchun & Chen, Lin & Zhao, Li-Jun, 2023. "Coherence and entanglement in Grover and Harrow–Hassidim–Lloyd algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:434:y:2005:i:7030:d:10.1038_nature03347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.