IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v7y2022i3d10.1038_s41560-022-00979-x.html
   My bibliography  Save this article

Stylized least-cost analysis of flexible nuclear power in deeply decarbonized electricity systems considering wind and solar resources worldwide

Author

Listed:
  • Lei Duan

    (Carnegie Institution for Science)

  • Robert Petroski

    (TerraPower LLC)

  • Lowell Wood

    (Gates Ventures LLC)

  • Ken Caldeira

    (Carnegie Institution for Science
    Breakthrough Energy LLC)

Abstract

New designs of advanced nuclear power plants have been proposed that may allow nuclear power to be less expensive and more flexible than conventional nuclear. It is unclear how and whether such a system would complement variable renewables in decarbonized electricity systems. Here we modelled stylized electricity systems under a least-cost optimization framework taking into account technoeconomic factors only, considering electricity demand and renewable potential in 42 country-level regions. In our model, in moderate decarbonization scenarios, solar and wind can provide less costly electricity when competing against nuclear at near-current US Energy Information Administration (US$6,317 per kilowatt-electric (kWe)) and at US$4,000 kWe−1 cost levels. In contrast, in deeply decarbonized systems (for example, beyond ~80% emissions reduction) and in the absence of low-cost grid-flexibility mechanisms, nuclear can be competitive with solar and wind. High-quality wind resources can make it difficult for nuclear to compete. Thermal heat storage coupled to nuclear power can, in some cases, promote wind and solar.

Suggested Citation

  • Lei Duan & Robert Petroski & Lowell Wood & Ken Caldeira, 2022. "Stylized least-cost analysis of flexible nuclear power in deeply decarbonized electricity systems considering wind and solar resources worldwide," Nature Energy, Nature, vol. 7(3), pages 260-269, March.
  • Handle: RePEc:nat:natene:v:7:y:2022:i:3:d:10.1038_s41560-022-00979-x
    DOI: 10.1038/s41560-022-00979-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-022-00979-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-022-00979-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenxi Xiang & Xinye Zheng & Feng Song & Jiang Lin & Zhigao Jiang, 2023. "Assessing the roles of efficient market versus regulatory capture in China’s power market reform," Nature Energy, Nature, vol. 8(7), pages 747-757, July.
    2. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    3. Davide Tonelli & Lorenzo Rosa & Paolo Gabrielli & Ken Caldeira & Alessandro Parente & Francesco Contino, 2023. "Global land and water limits to electrolytic hydrogen production using wind and solar resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Forsberg, Charles, 2023. "Low-cost crushed-rock heat storage with oil or salt heat transfer," Applied Energy, Elsevier, vol. 335(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:7:y:2022:i:3:d:10.1038_s41560-022-00979-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.