IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04559-0.html
   My bibliography  Save this article

Precise temporal regulation of alternative splicing during neural development

Author

Listed:
  • Sebastien M. Weyn-Vanhentenryck

    (Columbia University)

  • Huijuan Feng

    (Columbia University
    Tsinghua University)

  • Dmytro Ustianenko

    (Columbia University)

  • Rachel Duffié

    (Columbia University)

  • Qinghong Yan

    (Columbia University
    Amgen Inc.)

  • Martin Jacko

    (Columbia University)

  • Jose C. Martinez

    (Columbia University)

  • Marianne Goodwin

    (University of Florida, College of Medicine)

  • Xuegong Zhang

    (Tsinghua University)

  • Ulrich Hengst

    (Columbia University)

  • Stavros Lomvardas

    (Columbia University)

  • Maurice S. Swanson

    (University of Florida, College of Medicine)

  • Chaolin Zhang

    (Columbia University)

Abstract

Alternative splicing (AS) is one crucial step of gene expression that must be tightly regulated during neurodevelopment. However, the precise timing of developmental splicing switches and the underlying regulatory mechanisms are poorly understood. Here we systematically analyze the temporal regulation of AS in a large number of transcriptome profiles of developing mouse cortices, in vivo purified neuronal subtypes, and neurons differentiated in vitro. Our analysis reveals early-switch and late-switch exons in genes with distinct functions, and these switches accurately define neuronal maturation stages. Integrative modeling suggests that these switches are under direct and combinatorial regulation by distinct sets of neuronal RNA-binding proteins including Nova, Rbfox, Mbnl, and Ptbp. Surprisingly, various neuronal subtypes in the sensory systems lack Nova and/or Rbfox expression. These neurons retain the “immature” splicing program in early-switch exons, affecting numerous synaptic genes. These results provide new insights into the organization and regulation of the neurodevelopmental transcriptome.

Suggested Citation

  • Sebastien M. Weyn-Vanhentenryck & Huijuan Feng & Dmytro Ustianenko & Rachel Duffié & Qinghong Yan & Martin Jacko & Jose C. Martinez & Marianne Goodwin & Xuegong Zhang & Ulrich Hengst & Stavros Lomvard, 2018. "Precise temporal regulation of alternative splicing during neural development," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04559-0
    DOI: 10.1038/s41467-018-04559-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04559-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04559-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karl E. Bauer & Niklas Bargenda & Rico Schieweck & Christin Illig & Inmaculada Segura & Max Harner & Michael A. Kiebler, 2022. "RNA supply drives physiological granule assembly in neurons," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jennine M. Dawicki-McKenna & Alex J. Felix & Elisa A. Waxman & Congsheng Cheng & Defne A. Amado & Paul T. Ranum & Alexey Bogush & Lea V. Dungan & Jean Ann Maguire & Alyssa L. Gagne & Elizabeth A. Hell, 2023. "Mapping PTBP2 binding in human brain identifies SYNGAP1 as a target for therapeutic splice switching," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Takeshi Kaizuka & Takehiro Suzuki & Noriyuki Kishi & Kota Tamada & Manfred W. Kilimann & Takehiko Ueyama & Masahiko Watanabe & Tomomi Shimogori & Hideyuki Okano & Naoshi Dohmae & Toru Takumi, 2024. "Remodeling of the postsynaptic proteome in male mice and marmosets during synapse development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04559-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.