IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00967-w.html
   My bibliography  Save this article

Observation of spin-orbit effects with spin rotation symmetry

Author

Listed:
  • Alisha M. Humphries

    (University of Denver)

  • Tao Wang

    (University of Delaware)

  • Eric R. J. Edwards

    (National Institute of Standards and Technology)

  • Shane R. Allen

    (University of Denver)

  • Justin M. Shaw

    (National Institute of Standards and Technology)

  • Hans T. Nembach

    (National Institute of Standards and Technology)

  • John Q. Xiao

    (University of Delaware)

  • T. J. Silva

    (National Institute of Standards and Technology)

  • Xin Fan

    (University of Denver)

Abstract

The spin–orbit interaction enables interconversion between a charge current and a spin current. It is usually believed that in a nonmagnetic metal (NM) or at a NM/ferromagnetic metal (FM) bilayer interface, the symmetry of spin–orbit effects requires that the spin current, charge current, and spin orientation are all orthogonal to each other. Here we demonstrate the presence of spin–orbit effects near the NM/FM interface that exhibit a very different symmetry, hereafter referred to as spin-rotation symmetry, from the conventional spin Hall effect while the spin polarization is rotating about the magnetization. These results imply that a perpendicularly polarized spin current can be generated with an in-plane charge current simply by use of a FM/NM bilayer with magnetization collinear to the charge current. The ability to generate a spin current with arbitrary polarization using typical magnetic materials will benefit the development of magnetic memories.

Suggested Citation

  • Alisha M. Humphries & Tao Wang & Eric R. J. Edwards & Shane R. Allen & Justin M. Shaw & Hans T. Nembach & John Q. Xiao & T. J. Silva & Xin Fan, 2017. "Observation of spin-orbit effects with spin rotation symmetry," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00967-w
    DOI: 10.1038/s41467-017-00967-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00967-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00967-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunfeng You & Hua Bai & Xiaoyu Feng & Xiaolong Fan & Lei Han & Xiaofeng Zhou & Yongjian Zhou & Ruiqi Zhang & Tongjin Chen & Feng Pan & Cheng Song, 2021. "Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Yang Cao & Hao Ding & Yalu Zuo & Xiling Li & Yibing Zhao & Tong Li & Na Lei & Jiangwei Cao & Mingsu Si & Li Xi & Chenglong Jia & Desheng Xue & Dezheng Yang, 2024. "Acoustic spin rotation in heavy-metal-ferromagnet bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Man Yang & Liang Sun & Yulun Zeng & Jun Cheng & Kang He & Xi Yang & Ziqiang Wang & Longqian Yu & Heng Niu & Tongzhou Ji & Gong Chen & Bingfeng Miao & Xiangrong Wang & Haifeng Ding, 2024. "Highly efficient field-free switching of perpendicular yttrium iron garnet with collinear spin current," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Yuki Hibino & Tomohiro Taniguchi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa, 2021. "Giant charge-to-spin conversion in ferromagnet via spin-orbit coupling," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Shuai Hu & Ding-Fu Shao & Huanglin Yang & Chang Pan & Zhenxiao Fu & Meng Tang & Yumeng Yang & Weijia Fan & Shiming Zhou & Evgeny Y. Tsymbal & Xuepeng Qiu, 2022. "Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Mengxi Wang & Jun Zhou & Xiaoguang Xu & Tanzhao Zhang & Zhiqiang Zhu & Zhixian Guo & Yibo Deng & Ming Yang & Kangkang Meng & Bin He & Jialiang Li & Guoqiang Yu & Tao Zhu & Ang Li & Xiaodong Han & Yong, 2023. "Field-free spin-orbit torque switching via out-of-plane spin-polarization induced by an antiferromagnetic insulator/heavy metal interface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00967-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.