IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38550-1.html
   My bibliography  Save this article

Field-free spin-orbit torque switching via out-of-plane spin-polarization induced by an antiferromagnetic insulator/heavy metal interface

Author

Listed:
  • Mengxi Wang

    (University of Science and Technology Beijing)

  • Jun Zhou

    (Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03)

  • Xiaoguang Xu

    (University of Science and Technology Beijing)

  • Tanzhao Zhang

    (University of Science and Technology Beijing)

  • Zhiqiang Zhu

    (University of Science and Technology Beijing)

  • Zhixian Guo

    (University of Science and Technology Beijing)

  • Yibo Deng

    (University of Science and Technology Beijing)

  • Ming Yang

    (The Hong Kong Polytechnic University)

  • Kangkang Meng

    (University of Science and Technology Beijing)

  • Bin He

    (Chinese Academy of Sciences)

  • Jialiang Li

    (Chinese Academy of Sciences)

  • Guoqiang Yu

    (Chinese Academy of Sciences)

  • Tao Zhu

    (Chinese Academy of Sciences)

  • Ang Li

    (Beijing University of Technology)

  • Xiaodong Han

    (Beijing University of Technology)

  • Yong Jiang

    (University of Science and Technology Beijing)

Abstract

Manipulating spin polarization orientation is challenging but crucial for field-free spintronic devices. Although such manipulation has been demonstrated in a limited number of antiferromagnetic metal-based systems, the inevitable shunting effects from the metallic layer can reduce the overall device efficiency. In this study, we propose an antiferromagnetic insulator-based heterostructure NiO/Ta/Pt/Co/Pt for such spin polarization control without any shunting effect in the antiferromagnetic layer. We show that zero-field magnetization switching can be realized and is related to the out-of-plane component of spin polarization modulated by the NiO/Pt interface. The zero-field magnetization switching ratio can be effectively tuned by the substrates, in which the easy axis of NiO can be manipulated by the tensile or compressive strain from the substrates. Our work demonstrates that the insulating antiferromagnet based heterostructure is a promising platform to enhance the spin-orbital torque efficiency and achieve field-free magnetization switching, thus opening an avenue towards energy-efficient spintronic devices.

Suggested Citation

  • Mengxi Wang & Jun Zhou & Xiaoguang Xu & Tanzhao Zhang & Zhiqiang Zhu & Zhixian Guo & Yibo Deng & Ming Yang & Kangkang Meng & Bin He & Jialiang Li & Guoqiang Yu & Tao Zhu & Ang Li & Xiaodong Han & Yong, 2023. "Field-free spin-orbit torque switching via out-of-plane spin-polarization induced by an antiferromagnetic insulator/heavy metal interface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38550-1
    DOI: 10.1038/s41467-023-38550-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38550-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38550-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alisha M. Humphries & Tao Wang & Eric R. J. Edwards & Shane R. Allen & Justin M. Shaw & Hans T. Nembach & John Q. Xiao & T. J. Silva & Xin Fan, 2017. "Observation of spin-orbit effects with spin rotation symmetry," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    2. T. Nan & C. X. Quintela & J. Irwin & G. Gurung & D. F. Shao & J. Gibbons & N. Campbell & K. Song & S. -Y. Choi & L. Guo & R. D. Johnson & P. Manuel & R. V. Chopdekar & I. Hallsteinsen & T. Tybell & P., 2020. "Controlling spin current polarization through non-collinear antiferromagnetism," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. A. van den Brink & G. Vermijs & A. Solignac & J. Koo & J. T. Kohlhepp & H. J. M. Swagten & B. Koopmans, 2016. "Field-free magnetization reversal by spin-Hall effect and exchange bias," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fen Xue & Shy-Jay Lin & Mingyuan Song & William Hwang & Christoph Klewe & Chien-Min Lee & Emrah Turgut & Padraic Shafer & Arturas Vailionis & Yen-Lin Huang & Wilman Tsai & Xinyu Bao & Shan X. Wang, 2023. "Field-free spin-orbit torque switching assisted by in-plane unconventional spin torque in ultrathin [Pt/Co]N," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yang Cao & Hao Ding & Yalu Zuo & Xiling Li & Yibing Zhao & Tong Li & Na Lei & Jiangwei Cao & Mingsu Si & Li Xi & Chenglong Jia & Desheng Xue & Dezheng Yang, 2024. "Acoustic spin rotation in heavy-metal-ferromagnet bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Yuki Hibino & Tomohiro Taniguchi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa, 2021. "Giant charge-to-spin conversion in ferromagnet via spin-orbit coupling," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Yunfeng You & Hua Bai & Xiaoyu Feng & Xiaolong Fan & Lei Han & Xiaofeng Zhou & Yongjian Zhou & Ruiqi Zhang & Tongjin Chen & Feng Pan & Cheng Song, 2021. "Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Man Yang & Liang Sun & Yulun Zeng & Jun Cheng & Kang He & Xi Yang & Ziqiang Wang & Longqian Yu & Heng Niu & Tongzhou Ji & Gong Chen & Bingfeng Miao & Xiangrong Wang & Haifeng Ding, 2024. "Highly efficient field-free switching of perpendicular yttrium iron garnet with collinear spin current," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Shuai Hu & Ding-Fu Shao & Huanglin Yang & Chang Pan & Zhenxiao Fu & Meng Tang & Yumeng Yang & Weijia Fan & Shiming Zhou & Evgeny Y. Tsymbal & Xuepeng Qiu, 2022. "Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Binoy K. Hazra & Banabir Pal & Jae-Chun Jeon & Robin R. Neumann & Börge Göbel & Bharat Grover & Hakan Deniz & Andriy Styervoyedov & Holger Meyerheim & Ingrid Mertig & See-Hun Yang & Stuart S. P. Parki, 2023. "Generation of out-of-plane polarized spin current by spin swapping," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Kouta Kondou & Hua Chen & Takahiro Tomita & Muhammad Ikhlas & Tomoya Higo & Allan H. MacDonald & Satoru Nakatsuji & YoshiChika Otani, 2021. "Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Cuimei Cao & Shiwei Chen & Rui-Chun Xiao & Zengtai Zhu & Guoqiang Yu & Yangping Wang & Xuepeng Qiu & Liang Liu & Tieyang Zhao & Ding-Fu Shao & Yang Xu & Jingsheng Chen & Qingfeng Zhan, 2023. "Anomalous spin current anisotropy in a noncollinear antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Sihao Deng & Olena Gomonay & Jie Chen & Gerda Fischer & Lunhua He & Cong Wang & Qingzhen Huang & Feiran Shen & Zhijian Tan & Rui Zhou & Ze Hu & Libor Šmejkal & Jairo Sinova & Wolfgang Wernsdorfer & Ch, 2024. "Phase transitions associated with magnetic-field induced topological orbital momenta in a non-collinear antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38550-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.