IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00131-4.html
   My bibliography  Save this article

Achieving ultrahigh triboelectric charge density for efficient energy harvesting

Author

Listed:
  • Jie Wang

    (National Center for Nanoscience and Technology (NCNST)
    Georgia Institute of Technology)

  • Changsheng Wu

    (Georgia Institute of Technology)

  • Yejing Dai

    (Georgia Institute of Technology
    Tianjin University)

  • Zhihao Zhao

    (Tianjin University)

  • Aurelia Wang

    (Georgia Institute of Technology)

  • Tiejun Zhang

    (Georgia Institute of Technology)

  • Zhong Lin Wang

    (National Center for Nanoscience and Technology (NCNST)
    Georgia Institute of Technology)

Abstract

With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10−6 torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m−2, which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.

Suggested Citation

  • Jie Wang & Changsheng Wu & Yejing Dai & Zhihao Zhao & Aurelia Wang & Tiejun Zhang & Zhong Lin Wang, 2017. "Achieving ultrahigh triboelectric charge density for efficient energy harvesting," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00131-4
    DOI: 10.1038/s41467-017-00131-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00131-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00131-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim, Alwathiqbellah & Hassan, Mostafa, 2023. "Extended bandwidth of 2DOF double impact triboelectric energy harvesting: Theoretical and experimental verification," Applied Energy, Elsevier, vol. 333(C).
    2. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Hu, Guobiao & Zhao, Chaoyang & Yang, Yaowen & Li, Xin & Liang, Junrui, 2022. "Triboelectric energy harvesting using an origami-inspired structure," Applied Energy, Elsevier, vol. 306(PB).
    5. Liuting Shan & Qizhen Chen & Rengjian Yu & Changsong Gao & Lujian Liu & Tailiang Guo & Huipeng Chen, 2023. "A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00131-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.