IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9401.html
   My bibliography  Save this article

Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing

Author

Listed:
  • Zhaona Wang

    (School of Materials Science and Engineering, Georgia Institute of Technology
    Applied Optics Beijing Area Major Laboratory, Beijing Normal University)

  • Ruomeng Yu

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Caofeng Pan

    (Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences)

  • Zhaoling Li

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Jin Yang

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Fang Yi

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Zhong Lin Wang

    (School of Materials Science and Engineering, Georgia Institute of Technology
    Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences)

Abstract

Zinc oxide is potentially a useful material for ultraviolet detectors; however, a relatively long response time hinders practical implementation. Here by designing and fabricating a self-powered ZnO/perovskite-heterostructured ultraviolet photodetector, the pyroelectric effect, induced in wurtzite ZnO nanowires on ultraviolet illumination, has been utilized as an effective approach for high-performance photon sensing. The response time is improved from 5.4 s to 53 μs at the rising edge, and 8.9 s to 63 μs at the falling edge, with an enhancement of five orders in magnitudes. The specific detectivity and the responsivity are both enhanced by 322%. This work provides a novel design to achieve ultrafast ultraviolet sensing at room temperature via light-self-induced pyroelectric effect. The newly designed ultrafast self-powered ultraviolet nanosensors may find promising applications in ultrafast optics, nonlinear optics, optothermal detections, computational memories and biocompatible optoelectronic probes.

Suggested Citation

  • Zhaona Wang & Ruomeng Yu & Caofeng Pan & Zhaoling Li & Jin Yang & Fang Yi & Zhong Lin Wang, 2015. "Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9401
    DOI: 10.1038/ncomms9401
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9401
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Chengbin & Park, Juhyuk & Ryoun Youn, Jae & Seok Song, Young, 2022. "Integration of form-stable phase change material into pyroelectric energy harvesting system," Applied Energy, Elsevier, vol. 307(C).
    2. Yang Wang & Shuhao Wang & Yanze Meng & Zhen Liu & Dijie Li & Yunyang Bai & Guoliang Yuan & Yaojin Wang & Xuehui Zhang & Xiaoguang Li & Xuliang Deng, 2022. "Pyro-catalysis for tooth whitening via oral temperature fluctuation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.