IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9062.html
   My bibliography  Save this article

Moisture dipole over the Tibetan Plateau during the past five and a half centuries

Author

Listed:
  • Qi-Bin Zhang

    (State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences)

  • Michael N. Evans

    (University of Maryland)

  • Lixin Lyu

    (State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences)

Abstract

The South Asian Monsoon and mid-latitude Westerlies are two important controls on Tibetan Plateau (TP) fresh water resources. Understanding their interaction requires long-term information on spatial patterns in moisture variability on the TP. Here we develop a network of 23 moisture-sensitive tree-ring chronologies from major juniper forests in a north–south transect on the eastern TP. Over the past five and a half centuries, we find that these chronologies cluster into two groups, North and South, of ∼33° N. Southern and northern regional chronology subsets are positively and significantly correlated with May–June Palmer Drought Severity Indices (PDSI). The meridional moisture stress gradient reconstructed from these data suggests substantial stochastic variation, yet persistent moisture stress differences are observed between 1463–1502 CE and 1693–1734 CE. Identification of these patterns provides clues linking them with forced or intrinsic tropical–extratropical interactions and thus facilitates studies of interannual–decadal dipole variations in hydroclimate over the TP.

Suggested Citation

  • Qi-Bin Zhang & Michael N. Evans & Lixin Lyu, 2015. "Moisture dipole over the Tibetan Plateau during the past five and a half centuries," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9062
    DOI: 10.1038/ncomms9062
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9062
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yenan Wu & Di Long & Upmanu Lall & Bridget R. Scanlon & Fuqiang Tian & Xudong Fu & Jianshi Zhao & Jianyun Zhang & Hao Wang & Chunhong Hu, 2022. "Reconstructed eight-century streamflow in the Tibetan Plateau reveals contrasting regional variability and strong nonstationarity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Philipp Hochreuther & Jakob Wernicke & Jussi Grießinger & Thomas Mölg & Haifeng Zhu & Lily Wang & Achim Bräuning, 2016. "Influence of the Indian Ocean Dipole on tree-ring δ18O of monsoonal Southeast Tibet," Climatic Change, Springer, vol. 137(1), pages 217-230, July.
    3. Xijin Wang & Fenghua Xie & Zhongshi Zhang & Stefan Liess & Keyan Fang & Chenxi Xu & Feng Shi, 2021. "Complex network of synchronous climate events in East Asian tree-ring data," Climatic Change, Springer, vol. 165(3), pages 1-14, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.