IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2832.html
   My bibliography  Save this article

Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring

Author

Listed:
  • Gregor Schwartz

    (Stanford University)

  • Benjamin C.-K. Tee

    (Stanford University)

  • Jianguo Mei

    (Stanford University)

  • Anthony L. Appleton

    (Stanford University)

  • Do Hwan Kim

    (Stanford University
    Present address: Department of Organic Materials and Fiber Engineering, 369 Sangdo-Ro, Dongjak-Gu, Soongsil University, Seoul 156-743, Korea)

  • Huiliang Wang

    (Stanford University)

  • Zhenan Bao

    (Stanford University)

Abstract

Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa−1, a fast response time of 15,000 cycles and a low power consumption of

Suggested Citation

  • Gregor Schwartz & Benjamin C.-K. Tee & Jianguo Mei & Anthony L. Appleton & Do Hwan Kim & Huiliang Wang & Zhenan Bao, 2013. "Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2832
    DOI: 10.1038/ncomms2832
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2832
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Zhang & Junlong Yang & Xingyu Hou & Gang Li & Liu Wang & Ningning Bai & Minkun Cai & Lingyu Zhao & Yan Wang & Jianming Zhang & Ke Chen & Xiang Wu & Canhui Yang & Yuan Dai & Zhengyou Zhang & Chuan, 2022. "Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yufei Zhang & Qiuchun Lu & Jiang He & Zhihao Huo & Runhui Zhou & Xun Han & Mengmeng Jia & Caofeng Pan & Zhong Lin Wang & Junyi Zhai, 2023. "Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yuan Zhang & Xiaomeng Zhou & Nian Zhang & Jiaqi Zhu & Ningning Bai & Xingyu Hou & Tao Sun & Gang Li & Lingyu Zhao & Yingchun Chen & Liu Wang & Chuan Fei Guo, 2024. "Ultrafast piezocapacitive soft pressure sensors with over 10 kHz bandwidth via bonded microstructured interfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Shuyun Zhuo & Cheng Song & Qinfeng Rong & Tianyi Zhao & Mingjie Liu, 2022. "Shape and stiffness memory ionogels with programmable pressure-resistance response," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.