IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29424-z.html
   My bibliography  Save this article

Shape and stiffness memory ionogels with programmable pressure-resistance response

Author

Listed:
  • Shuyun Zhuo

    (Beihang University)

  • Cheng Song

    (Beihang University)

  • Qinfeng Rong

    (Guangxi Normal University)

  • Tianyi Zhao

    (Beihang University)

  • Mingjie Liu

    (Beihang University
    Beihang University
    Beihang University
    Beihang University)

Abstract

Flexible pressure sensors usually require functional materials with both mechanical compliance and appropriate electrical performance. Most sensors based on materials with limited compressibility can hardly balance between high sensitivity and broad pressure range. Here, we prepare a heterophasic ionogel with shape and stiffness memory for adaptive pressure sensors. By combining the microstructure alignment for stiffness changing and shape memory micro-inclusions for stiffness fixing, the heterophasic ionogels reveal tunable compressibility. This controllable pressure-deformation property of the ionogels results in the pressure sensors’ programmable pressure-resistance behavior with tunable pressure ranges, varied detection limits, and good resolution at high pressure. Broad pressure ranges to 220 and 380 kPa, and tunable detection limit from 120 to 330 and 950 Pa are realized by the stiffness memory ionogel sensors. Adaptive detection is also brought out to monitor tiny pressure changes at low stiffness and distinguish different human motions at high stiffness. Using shape and stiffness memory materials in pressure sensors is a general design to achieve programmable performance for more complex application scenarios.

Suggested Citation

  • Shuyun Zhuo & Cheng Song & Qinfeng Rong & Tianyi Zhao & Mingjie Liu, 2022. "Shape and stiffness memory ionogels with programmable pressure-resistance response," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29424-z
    DOI: 10.1038/s41467-022-29424-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29424-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29424-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lisa Y. Chen & Benjamin C. -K. Tee & Alex L. Chortos & Gregor Schwartz & Victor Tse & Darren J. Lipomi & H. -S. Philip Wong & Michael V. McConnell & Zhenan Bao, 2014. "Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    2. Gregor Schwartz & Benjamin C.-K. Tee & Jianguo Mei & Anthony L. Appleton & Do Hwan Kim & Huiliang Wang & Zhenan Bao, 2013. "Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
    3. Shu Gong & Willem Schwalb & Yongwei Wang & Yi Chen & Yue Tang & Jye Si & Bijan Shirinzadeh & Wenlong Cheng, 2014. "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekir Aksoy & Yufei Hao & Giulio Grasso & Krishna Manaswi Digumarti & Vito Cacucciolo & Herbert Shea, 2022. "Shielded soft force sensors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Rui Chen & Tao Luo & Jincheng Wang & Renpeng Wang & Chen Zhang & Yu Xie & Lifeng Qin & Haimin Yao & Wei Zhou, 2023. "Nonlinearity synergy: An elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yuan Zhang & Junlong Yang & Xingyu Hou & Gang Li & Liu Wang & Ningning Bai & Minkun Cai & Lingyu Zhao & Yan Wang & Jianming Zhang & Ke Chen & Xiang Wu & Canhui Yang & Yuan Dai & Zhengyou Zhang & Chuan, 2022. "Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yufei Zhang & Qiuchun Lu & Jiang He & Zhihao Huo & Runhui Zhou & Xun Han & Mengmeng Jia & Caofeng Pan & Zhong Lin Wang & Junyi Zhai, 2023. "Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Xinlei Shi & Xiangqian Fan & Yinbo Zhu & Yang Liu & Peiqi Wu & Renhui Jiang & Bao Wu & Heng-An Wu & He Zheng & Jianbo Wang & Xinyi Ji & Yongsheng Chen & Jiajie Liang, 2022. "Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yongjun Xiao & Chao Guo & Qingdong Zeng & Zenggang Xiong & Yunwang Ge & Wenqing Chen & Jun Wan & Bo Wang, 2021. "Electret Nanogenerators for Self-Powered, Flexible Electronic Pianos," Sustainability, MDPI, vol. 13(8), pages 1-10, April.
    7. Fabrizio Antonio Viola & Jonathan Barsotti & Filippo Melloni & Guglielmo Lanzani & Yun-Hi Kim & Virgilio Mattoli & Mario Caironi, 2021. "A sub-150-nanometre-thick and ultraconformable solution-processed all-organic transistor," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Yuan Zhang & Xiaomeng Zhou & Nian Zhang & Jiaqi Zhu & Ningning Bai & Xingyu Hou & Tao Sun & Gang Li & Lingyu Zhao & Yingchun Chen & Liu Wang & Chuan Fei Guo, 2024. "Ultrafast piezocapacitive soft pressure sensors with over 10 kHz bandwidth via bonded microstructured interfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Christopher T. Ertsgaard & Minki Kim & Jungwon Choi & Sang-Hyun Oh, 2023. "Wireless dielectrophoresis trapping and remote impedance sensing via resonant wireless power transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Yuchen Qiu & Bo Zhang & Junchuan Yang & Hanfei Gao & Shuang Li & Le Wang & Penghua Wu & Yewang Su & Yan Zhao & Jiangang Feng & Lei Jiang & Yuchen Wu, 2021. "Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29424-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.