IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2705.html
   My bibliography  Save this article

Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity

Author

Listed:
  • By Lung-Hao Hu

    (Institute of Atomic and Molecular Sciences, Academia Sinica)

  • Feng-Yu Wu

    (Institute of Atomic and Molecular Sciences, Academia Sinica)

  • Cheng-Te Lin

    (Institute of Atomic and Molecular Sciences, Academia Sinica)

  • Andrei N. Khlobystov

    (School of Chemistry, University of Nottingham)

  • Lain-Jong Li

    (Institute of Atomic and Molecular Sciences, Academia Sinica)

Abstract

The specific capacity of commercially available cathode carbon-coated lithium iron phosphate is typically 120–160 mAh g−1, which is lower than the theoretical value 170 mAh g−1. Here we report that the carbon-coated lithium iron phosphate, surface-modified with 2 wt% of the electrochemically exfoliated graphene layers, is able to reach 208 mAh g−1 in specific capacity. The excess capacity is attributed to the reversible reduction–oxidation reaction between the lithium ions of the electrolyte and the exfoliated graphene flakes, where the graphene flakes exhibit a capacity higher than 2,000 mAh g−1. The highly conductive graphene flakes wrapping around carbon-coated lithium iron phosphate also assist the electron migration during the charge/discharge processes, diminishing the irreversible capacity at the first cycle and leading to ~100% coulombic efficiency without fading at various C-rates. Such a simple and scalable approach may also be applied to other cathode systems, boosting up the capacity for various Li batteries.

Suggested Citation

  • By Lung-Hao Hu & Feng-Yu Wu & Cheng-Te Lin & Andrei N. Khlobystov & Lain-Jong Li, 2013. "Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2705
    DOI: 10.1038/ncomms2705
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2705
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Junyi & Jiang, Jinxia & Zhou, Yiguang & Chen, Mo & Xiao, Shuhao & Niu, Xiaobin & Wu, Rui & Yu, Le & Blackwood, Daniel John & Chen, Jun Song, 2023. "Nickel single-atom catalysts on porous carbon nanosheets for high-performance lithium-selenium batteries," Energy, Elsevier, vol. 285(C).
    2. Maria Mechili & Christos Vaitsis & Nikolaos Argirusis & Pavlos K. Pandis & Georgia Sourkouni & Antonis A. Zorpas & Christos Argirusis, 2022. "Research Progress in Metal-Organic Framework Based Nanomaterials Applied in Battery Cathodes," Energies, MDPI, vol. 15(15), pages 1-30, July.
    3. Seok Hee Lee & Sung Pil Woo & Nitul Kakati & Dong-Joo Kim & Young Soo Yoon, 2018. "A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems," Energies, MDPI, vol. 11(11), pages 1-81, November.
    4. Guanjun Ji & Junxiong Wang & Zheng Liang & Kai Jia & Jun Ma & Zhaofeng Zhuang & Guangmin Zhou & Hui-Ming Cheng, 2023. "Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Geonhui Gwak & Hyunchul Ju, 2019. "Multi-Scale and Multi-Dimensional Thermal Modeling of Lithium-Ion Batteries," Energies, MDPI, vol. 12(3), pages 1-27, January.
    6. Diwakar Karuppiah & Rajkumar Palanisamy & Arjunan Ponnaiah & Wei-Ren Liu & Chia-Hung Huang & Subadevi Rengapillai & Sivakumar Marimuthu, 2020. "Eggshell-Membrane-Derived Carbon Coated on Li 2 FeSiO 4 Cathode Material for Li-Ion Batteries," Energies, MDPI, vol. 13(4), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.