IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47506-y.html
   My bibliography  Save this article

RNA targeting and cleavage by the type III-Dv CRISPR effector complex

Author

Listed:
  • Evan A. Schwartz

    (University of Texas at Austin)

  • Jack P. K. Bravo

    (University of Texas at Austin)

  • Mohd Ahsan

    (University of California)

  • Luis A. Macias

    (University of Texas at Austin)

  • Caitlyn L. McCafferty

    (University of Texas at Austin)

  • Tyler L. Dangerfield

    (University of Texas at Austin)

  • Jada N. Walker

    (University of Texas at Austin)

  • Jennifer S. Brodbelt

    (University of Texas at Austin)

  • Giulia Palermo

    (University of California)

  • Peter C. Fineran

    (University of Otago
    University of Otago
    University of Otago)

  • Robert D. Fagerlund

    (University of Otago
    University of Otago
    University of Otago)

  • David W. Taylor

    (University of Texas at Austin
    University of Texas at Austin
    University of Texas at Austin
    University of Texas at Austin)

Abstract

CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1–5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6–8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2′-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.

Suggested Citation

  • Evan A. Schwartz & Jack P. K. Bravo & Mohd Ahsan & Luis A. Macias & Caitlyn L. McCafferty & Tyler L. Dangerfield & Jada N. Walker & Jennifer S. Brodbelt & Giulia Palermo & Peter C. Fineran & Robert D., 2024. "RNA targeting and cleavage by the type III-Dv CRISPR effector complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47506-y
    DOI: 10.1038/s41467-024-47506-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47506-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47506-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Jurre A. Steens & Yifan Zhu & David W. Taylor & Jack P. K. Bravo & Stijn H. P. Prinsen & Cor D. Schoen & Bart J. F. Keijser & Michel Ossendrijver & L. Marije Hofstra & Stan J. J. Brouns & Akeo Shinkai, 2021. "SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Evan A. Schwartz & Tess M. McBride & Jack P. K. Bravo & Daniel Wrapp & Peter C. Fineran & Robert D. Fagerlund & David W. Taylor, 2022. "Structural rearrangements allow nucleic acid discrimination by type I-D Cascade," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    5. Omar O. Abudayyeh & Jonathan S. Gootenberg & Patrick Essletzbichler & Shuo Han & Julia Joung & Joseph J. Belanto & Vanessa Verdine & David B. T. Cox & Max J. Kellner & Aviv Regev & Eric S. Lander & Da, 2017. "RNA targeting with CRISPR–Cas13," Nature, Nature, vol. 550(7675), pages 280-284, October.
    6. Todd A. Anzelon & Saikat Chowdhury & Siobhan M. Hughes & Yao Xiao & Gabriel C. Lander & Ian J. MacRae, 2021. "Structural basis for piRNA targeting," Nature, Nature, vol. 597(7875), pages 285-289, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meiling Lu & Chenlin Yu & Yuwen Zhang & Wenjun Ju & Zhi Ye & Chenyang Hua & Jinze Mao & Chunyi Hu & Zhenhuang Yang & Yibei Xiao, 2024. "Structure and genome editing of type I-B CRISPR-Cas," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Jeonghye Yu & Jongpil Shin & Jihwan Yu & Jihye Kim & Daseuli Yu & Won Do Heo, 2024. "Programmable RNA base editing with photoactivatable CRISPR-Cas13," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    5. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    15. Maciej K. Kocylowski & Hande Aypek & Wolfgang Bildl & Martin Helmstädter & Philipp Trachte & Bernhard Dumoulin & Sina Wittösch & Lukas Kühne & Ute Aukschun & Carolin Teetzen & Oliver Kretz & Botond Ga, 2022. "A slit-diaphragm-associated protein network for dynamic control of renal filtration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Michael A. Longo & Sunetra Roy & Yue Chen & Karl-Heinz Tomaszowski & Andrew S. Arvai & Jordan T. Pepper & Rebecca A. Boisvert & Selvi Kunnimalaiyaan & Caezanne Keshvani & David Schild & Albino Bacolla, 2023. "RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Leonardo Betancurt-Anzola & Markel Martínez-Carranza & Marc Delarue & Kelly M. Zatopek & Andrew F. Gardner & Ludovic Sauguet, 2023. "Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Karin Vogel & Tobias Bläske & Marie-Kristin Nagel & Christoph Globisch & Shane Maguire & Lorenz Mattes & Christian Gude & Michael Kovermann & Karin Hauser & Christine Peter & Erika Isono, 2022. "Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Robin Anger & Laetitia Pieulle & Meriam Shahin & Odile Valette & Hugo Guenno & Artemis Kosta & Vladimir Pelicic & Rémi Fronzes, 2023. "Structure of a heteropolymeric type 4 pilus from a monoderm bacterium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47506-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.