IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46480-9.html
   My bibliography  Save this article

Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance

Author

Listed:
  • Xianke Xiang

    (Tsinghua University
    Tsinghua University)

  • Yao He

    (Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University)

  • Zemin Zhang

    (Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University
    Shenzhen Bay Lab)

  • Xuerui Yang

    (Tsinghua University
    Tsinghua University)

Abstract

RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.

Suggested Citation

  • Xianke Xiang & Yao He & Zemin Zhang & Xuerui Yang, 2024. "Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46480-9
    DOI: 10.1038/s41467-024-46480-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46480-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46480-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hong Han & Manuel Irimia & P. Joel Ross & Hoon-Ki Sung & Babak Alipanahi & Laurent David & Azadeh Golipour & Mathieu Gabut & Iacovos P. Michael & Emil N. Nachman & Eric Wang & Dan Trcka & Tadeo Thomps, 2013. "MBNL proteins repress ES-cell-specific alternative splicing and reprogramming," Nature, Nature, vol. 498(7453), pages 241-245, June.
    2. Mihriban Karaayvaz & Simona Cristea & Shawn M. Gillespie & Anoop P. Patel & Ravindra Mylvaganam & Christina C. Luo & Michelle C. Specht & Bradley E. Bernstein & Franziska Michor & Leif W. Ellisen, 2018. "Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Yair Aaronson & Eran Meshorer, 2013. "Regulation by alternative splicing," Nature, Nature, vol. 498(7453), pages 176-177, June.
    4. Kowarik, Alexander & Templ, Matthias, 2016. "Imputation with the R Package VIM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i07).
    5. Christian Mertes & Ines F. Scheller & Vicente A. Yépez & Muhammed H. Çelik & Yingjiqiong Liang & Laura S. Kremer & Mirjana Gusic & Holger Prokisch & Julien Gagneur, 2021. "Detection of aberrant splicing events in RNA-seq data using FRASER," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Veronique M. Braud & David S. J. Allan & Christopher A. O'Callaghan & Kalle Söderström & Annalisa D'Andrea & Graham S. Ogg & Sasha Lazetic & Neil T. Young & John I. Bell & Joseph H. Phillips & Lewis L, 1998. "HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C," Nature, Nature, vol. 391(6669), pages 795-799, February.
    7. Takayoshi Yamauchi & Toshifumi Hoki & Takaaki Oba & Vaibhav Jain & Hongbin Chen & Kristopher Attwood & Sebastiano Battaglia & Saby George & Gurkamal Chatta & Igor Puzanov & Carl Morrison & Kunle Oduns, 2021. "T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Wei Vivian Li & Jingyi Jessica Li, 2018. "An accurate and robust imputation method scImpute for single-cell RNA-seq data," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chhetri, Netra & Ghimire, Rajiv & Wagner, Melissa & Wang, Meng, 2020. "Global citizen deliberation: Case of world-wide views on climate and energy," Energy Policy, Elsevier, vol. 147(C).
    2. Carlos Miguel Lemos & Ross Joseph Gore & Ivan Puga-Gonzalez & F LeRon Shults, 2019. "Dimensionality and factorial invariance of religiosity among Christians and the religiously unaffiliated: A cross-cultural analysis based on the International Social Survey Programme," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-36, May.
    3. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Kaiwen Wang & Yuqiu Yang & Fangjiang Wu & Bing Song & Xinlei Wang & Tao Wang, 2023. "Comparative analysis of dimension reduction methods for cytometry by time-of-flight data," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Oliver Hirsch & Charles Christian Adarkwah, 2018. "The Issue of Burnout and Work Satisfaction in Younger GPs—A Cluster Analysis Utilizing the HaMEdSi Study," IJERPH, MDPI, vol. 15(10), pages 1-10, October.
    6. Ahmad R. Alsaber & Jiazhu Pan & Adeeba Al-Hurban, 2021. "Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018)," IJERPH, MDPI, vol. 18(3), pages 1-25, February.
    7. Marc Kuhn & Viola Marquardt & Sarah Selinka, 2021. "“Is Sharing Really Caring?”: The Role of Environmental Concern and Trust Reflecting Usage Intention of “Station-Based” and “Free-Floating”—Carsharing Business Models," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    8. Jing Qi & Yang Zhou & Zicen Zhao & Shuilin Jin, 2021. "SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-20, June.
    9. Zhixin Lun & Ravindra Khattree, 2021. "Imputation for Skewed Data: Multivariate Lomax Case," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 86-113, May.
    10. Nengsih Titin Agustin & Bertrand Frédéric & Maumy-Bertrand Myriam & Meyer Nicolas, 2019. "Determining the number of components in PLS regression on incomplete data set," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-28, December.
    11. Ji-Yong Sung & Hyun-Tae Shin & Kyung-Ah Sohn & Soo-Yong Shin & Woong-Yang Park & Je-Gun Joung, 2019. "Assessment of intratumoral heterogeneity with mutations and gene expression profiles," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-15, July.
    12. Md Tauhidul Islam & Jen-Yeu Wang & Hongyi Ren & Xiaomeng Li & Masoud Badiei Khuzani & Shengtian Sang & Lequan Yu & Liyue Shen & Wei Zhao & Lei Xing, 2022. "Leveraging data-driven self-consistency for high-fidelity gene expression recovery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Duy Pham & Xiao Tan & Brad Balderson & Jun Xu & Laura F. Grice & Sohye Yoon & Emily F. Willis & Minh Tran & Pui Yeng Lam & Arti Raghubar & Priyakshi Kalita-de Croft & Sunil Lakhani & Jana Vukovic & Ma, 2023. "Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    14. Schalk Burger & Searle Silverman & Gary van Vuuren, 2018. "Deriving Correlation Matrices for Missing Financial Time-Series Data," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(10), pages 105-105, October.
    15. Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
    16. Stacey D Wagner & Adam J Struck & Riti Gupta & Dylan R Farnsworth & Amy E Mahady & Katy Eichinger & Charles A Thornton & Eric T Wang & J Andrew Berglund, 2016. "Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy," PLOS Genetics, Public Library of Science, vol. 12(9), pages 1-24, September.
    17. P. B. Kenfac Dongmezo & P. N. Mwita & I. R. Kamga Tchwaket, 2017. "Imputation Based Treatment Effect Estimators," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(3), pages 1-2.
    18. Ido Nofech-Mozes & David Soave & Philip Awadalla & Sagi Abelson, 2023. "Pan-cancer classification of single cells in the tumour microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Hui Li & Cory R. Brouwer & Weijun Luo, 2022. "A universal deep neural network for in-depth cleaning of single-cell RNA-Seq data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Qionghua Zhu & Xin Zhao & Yuanhang Zhang & Yanping Li & Shang Liu & Jingxuan Han & Zhiyuan Sun & Chunqing Wang & Daqi Deng & Shanshan Wang & Yisen Tang & Yaling Huang & Siyuan Jiang & Chi Tian & Xi Ch, 2023. "Single cell multi-omics reveal intra-cell-line heterogeneity across human cancer cell lines," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46480-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.