IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45931-7.html
   My bibliography  Save this article

A high-current hydrogel generator with engineered mechanoionic asymmetry

Author

Listed:
  • Hongzhen Liu

    (The University of Hong Kong)

  • Xianglin Ji

    (City University of Hong Kong
    Hong Kong Science Park)

  • Zihao Guo

    (Chinese Academy of Sciences)

  • Xi Wei

    (The University of Hong Kong)

  • Jinchen Fan

    (University of Shanghai for Science and Technology)

  • Peng Shi

    (City University of Hong Kong
    Hong Kong Science Park)

  • Xiong Pu

    (Chinese Academy of Sciences)

  • Feng Gong

    (Southeast University)

  • Lizhi Xu

    (The University of Hong Kong
    Hong Kong Science Park, Shatin, New Territories)

Abstract

Mechanoelectrical energy conversion is a potential solution for the power supply of miniaturized wearable and implantable systems; yet it remains challenging due to limited current output when exploiting low-frequency motions with soft devices. We report a design of a hydrogel generator with mechanoionic current generation amplified by orders of magnitudes with engineered structural and chemical asymmetry. Under compressive loading, relief structures in the hydrogel intensify net ion fluxes induced by deformation gradient, which synergize with asymmetric ion adsorption characteristics of the electrodes and distinct diffusivity of cations and anions in the hydrogel matrix. This engineered mechanoionic process can yield 4 mA (5.5 A m−2) of peak current under cyclic compression of 80 kPa applied at 0.1 Hz, with the transferred charge reaching up to 916 mC m−2 per cycle. The high current output of this miniaturized hydrogel generator is beneficial for the powering of wearable devices, as exemplified by a controlled drug-releasing system for wound healing. The demonstrated mechanisms for amplifying mechanoionic effect will enable further designs for a variety of self-powered biomedical systems.

Suggested Citation

  • Hongzhen Liu & Xianglin Ji & Zihao Guo & Xi Wei & Jinchen Fan & Peng Shi & Xiong Pu & Feng Gong & Lizhi Xu, 2024. "A high-current hydrogel generator with engineered mechanoionic asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45931-7
    DOI: 10.1038/s41467-024-45931-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45931-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45931-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu-Chuan Chien & Haidong Liu & Ashok S. Menon & William R. Brant & Daniel Brandell & Matthew J. Lacey, 2023. "Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xiaomeng Liu & Hongyan Gao & Joy E. Ward & Xiaorong Liu & Bing Yin & Tianda Fu & Jianhan Chen & Derek R. Lovley & Jun Yao, 2020. "Power generation from ambient humidity using protein nanowires," Nature, Nature, vol. 578(7796), pages 550-554, February.
    3. Li Cheng & Qi Xu & Youbin Zheng & Xiaofeng Jia & Yong Qin, 2018. "A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Haiyan Wang & Tiancheng He & Xuanzhang Hao & Yaxin Huang & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "Moisture adsorption-desorption full cycle power generation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Puying Li & Yajie Hu & Wenya He & Bing Lu & Haiyan Wang & Huhu Cheng & Liangti Qu, 2023. "Multistage coupling water-enabled electric generator with customizable energy output," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Dae Sol Kong & Jae Yeon Han & Young Joon Ko & Sang Hyeok Park & Minbaek Lee & Jong Hoon Jung, 2021. "A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting," Energies, MDPI, vol. 14(4), pages 1-10, February.
    6. Song Zhang & Mingchao Chi & Jilong Mo & Tao Liu & Yanhua Liu & Qiu Fu & Jinlong Wang & Bin Luo & Ying Qin & Shuangfei Wang & Shuangxi Nie, 2022. "Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Zhuyuan Wang & Ting Hu & Mike Tebyetekerwa & Xiangkang Zeng & Fan Du & Yuan Kang & Xuefeng Li & Hao Zhang & Huanting Wang & Xiwang Zhang, 2024. "Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
    9. Su Yang & Lei Zhang & Jianfeng Mao & Jianmiao Guo & Yang Chai & Jianhua Hao & Wei Chen & Xiaoming Tao, 2024. "Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    11. Jin Tan & Sunmiao Fang & Zhuhua Zhang & Jun Yin & Luxian Li & Xiang Wang & Wanlin Guo, 2022. "Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Xiaomeng Liu & Toshiyuki Ueki & Hongyan Gao & Trevor L. Woodard & Kelly P. Nevin & Tianda Fu & Shuai Fu & Lu Sun & Derek R. Lovley & Jun Yao, 2022. "Microbial biofilms for electricity generation from water evaporation and power to wearables," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45931-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.