Challenging thermodynamics: combining immiscible elements in a single-phase nano-ceramic
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-45413-w
Download full text from publisher
References listed on IDEAS
- Mohcin Akri & Shu Zhao & Xiaoyu Li & Ketao Zang & Adam F. Lee & Mark A. Isaacs & Wei Xi & Yuvaraj Gangarajula & Jun Luo & Yujing Ren & Yi-Tao Cui & Lei Li & Yang Su & Xiaoli Pan & Wu Wen & Yang Pan & , 2019. "Atomically dispersed nickel as coke-resistant active sites for methane dry reforming," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
- Dragos Neagu & Tae-Sik Oh & David N. Miller & Hervé Ménard & Syed M. Bukhari & Stephen R. Gamble & Raymond J. Gorte & John M. Vohs & John T.S. Irvine, 2015. "Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
- Shengtai Hou & Xuefeng Ma & Yuan Shu & Jiafeng Bao & Qiuyue Zhang & Mingshu Chen & Pengfei Zhang & Sheng Dai, 2021. "Self-regeneration of supported transition metals by a high entropy-driven principle," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Jun Peng & Felipe Kremer & Daniel Walter & Yiliang Wu & Yi Ji & Jin Xiang & Wenzhu Liu & The Duong & Heping Shen & Teng Lu & Frank Brink & Dingyong Zhong & Li Li & Olivier Lee Cheong Lem & Yun Liu & K, 2022. "Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent," Nature, Nature, vol. 601(7894), pages 573-578, January.
- Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shuo Liu & Chaochao Dun & Feipeng Yang & Kang-Lan Tung & Dominik Wierzbicki & Sanjit Ghose & Kaiwen Chen & Linfeng Chen & Richard Ciora & Mohd A. Khan & Zhengxi Xuan & Miao Yu & Jeffrey J. Urban & Mar, 2024. "A general flame aerosol route to kinetically stabilized metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
- Bo-Wen Zhang & Meng-Nan Zhu & Min-Rui Gao & Xiuan Xi & Nanqi Duan & Zhou Chen & Ren-Fei Feng & Hongbo Zeng & Jing-Li Luo, 2022. "Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Chengyang Zhang & Renkun Zhang & Hui Liu & Qinhong Wei & Dandan Gong & Liuye Mo & Hengcong Tao & Sha Cui & Luhui Wang, 2020. "One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO 2 on SiO 2 for Dry Reforming of Methane," Energies, MDPI, vol. 13(22), pages 1-12, November.
- Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Wang, Junkai & Zhou, Jun & Yang, Jiaming & Zong, Zheng & Fu, Lei & Lian, Zhongjie & Zhang, Xinchang & Wang, Xuan & Chen, Chengxiang & Ma, Wanli & Wu, Kai, 2020. "Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (BCo, Ni, Cu) Ruddlesden–Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells," Renewable Energy, Elsevier, vol. 157(C), pages 840-850.
- Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
- Marina Arapova & Ekaterina Smal & Yuliya Bespalko & Konstantin Valeev & Valeria Fedorova & Amir Hassan & Olga Bulavchenko & Vladislav Sadykov & Mikhail Simonov, 2023. "Methane Dry Reforming Catalysts Based on Pr-Doped Ceria–Zirconia Synthesized in Supercritical Propanol," Energies, MDPI, vol. 16(12), pages 1-17, June.
- Georgiadis, Amvrosios G. & Tsiotsias, Anastasios I. & Siakavelas, George I. & Charisiou, Nikolaos D. & Ehrhardt, Benedikt & Wang, Wen & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & Mascott, 2024. "An experimental and theoretical approach for the biogas dry reforming reaction using perovskite-derived La0.8X0.2NiO3-δ catalysts (X = Sm, Pr, Ce)," Renewable Energy, Elsevier, vol. 227(C).
- Li, Sen & Guo, Longhui & He, Xinyu & Qiao, Congzhen & Tian, Yajie, 2022. "Synthesis of uniform Ni nanoparticles encapsulated in ZSM–5 for selective hydrodeoxygenation of phenolics," Renewable Energy, Elsevier, vol. 194(C), pages 89-99.
- Arslan Mazhar & Asif Hussain Khoja & Abul Kalam Azad & Faisal Mushtaq & Salman Raza Naqvi & Sehar Shakir & Muhammad Hassan & Rabia Liaquat & Mustafa Anwar, 2021. "Performance Analysis of TiO 2 -Modified Co/MgAl 2 O 4 Catalyst for Dry Reforming of Methane in a Fixed Bed Reactor for Syngas (H 2 , CO) Production," Energies, MDPI, vol. 14(11), pages 1-20, June.
- Wang, Junkai & Yang, Jiaming & Fu, Lei & Zong, Zheng & Zhou, Jun & Wu, Kai, 2022. "In-situ growth of Ru/RuO2 nanoparticles decorated (La0.6Sr1.4)0.95Mn0.9Ru0.1O4 as a potential electrode for symmetrical solid oxide fuel cells," Renewable Energy, Elsevier, vol. 189(C), pages 1419-1427.
- Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Sanaz Koohfar & Masoud Ghasemi & Tyler Hafen & Georgios Dimitrakopoulos & Dongha Kim & Jenna Pike & Singaravelu Elangovan & Enrique D. Gomez & Bilge Yildiz, 2023. "Improvement of oxygen reduction activity and stability on a perovskite oxide surface by electrochemical potential," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
- Vecino-Mantilla, Sebastian & Zignani, Sabrina C. & Vannier, Rose-Noëlle & Aricò, Antonino S. & Lo Faro, Massimiliano, 2022. "Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas," Renewable Energy, Elsevier, vol. 192(C), pages 784-792.
- Li, Ziwei & Lin, Qian & Li, Min & Cao, Jianxin & Liu, Fei & Pan, Hongyan & Wang, Zhigang & Kawi, Sibudjing, 2020. "Recent advances in process and catalyst for CO2 reforming of methane," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Eleonora Calì & Melonie P. Thomas & Rama Vasudevan & Ji Wu & Oriol Gavalda-Diaz & Katharina Marquardt & Eduardo Saiz & Dragos Neagu & Raymond R. Unocic & Stephen C. Parker & Beth S. Guiton & David J. , 2023. "Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Mengyuan Zhang & Ying Gao & Chengmin Xie & Xiaolan Duan & Xiaoyan Lu & Kongliang Luo & Jian Ye & Xiaopeng Wang & Xinhua Gao & Qiang Niu & Pengfei Zhang & Sheng Dai, 2024. "Designing water resistant high entropy oxide materials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45413-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.