IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45028-1.html
   My bibliography  Save this article

The origin and structural evolution of de novo genes in Drosophila

Author

Listed:
  • Junhui Peng

    (The Rockefeller University)

  • Li Zhao

    (The Rockefeller University)

Abstract

Recent studies reveal that de novo gene origination from previously non-genic sequences is a common mechanism for gene innovation. These young genes provide an opportunity to study the structural and functional origins of proteins. Here, we combine high-quality base-level whole-genome alignments and computational structural modeling to study the origination, evolution, and protein structures of lineage-specific de novo genes. We identify 555 de novo gene candidates in D. melanogaster that originated within the Drosophilinae lineage. Sequence composition, evolutionary rates, and expression patterns indicate possible gradual functional or adaptive shifts with their gene ages. Surprisingly, we find little overall protein structural changes in candidates from the Drosophilinae lineage. We identify several candidates with potentially well-folded protein structures. Ancestral sequence reconstruction analysis reveals that most potentially well-folded candidates are often born well-folded. Single-cell RNA-seq analysis in testis shows that although most de novo gene candidates are enriched in spermatocytes, several young candidates are biased towards the early spermatogenesis stage, indicating potentially important but less emphasized roles of early germline cells in the de novo gene origination in testis. This study provides a systematic overview of the origin, evolution, and protein structural changes of Drosophilinae-specific de novo genes.

Suggested Citation

  • Junhui Peng & Li Zhao, 2024. "The origin and structural evolution of de novo genes in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45028-1
    DOI: 10.1038/s41467-024-45028-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45028-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45028-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Caroline M Weisman & Andrew W Murray & Sean R Eddy, 2020. "Many, but not all, lineage-specific genes can be explained by homology detection failure," PLOS Biology, Public Library of Science, vol. 18(11), pages 1-24, November.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    4. Nikolaos Vakirlis & Omer Acar & Brian Hsu & Nelson Castilho Coelho & S. Branden Van Oss & Aaron Wacholder & Kate Medetgul-Ernar & Ray W. Bowman & Cameron P. Hines & John Iannotta & Saurin Bipin Parikh, 2020. "De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    5. Anne-Ruxandra Carvunis & Thomas Rolland & Ilan Wapinski & Michael A. Calderwood & Muhammed A. Yildirim & Nicolas Simonis & Benoit Charloteaux & César A. Hidalgo & Justin Barbette & Balaji Santhanam & , 2012. "Proto-genes and de novo gene birth," Nature, Nature, vol. 487(7407), pages 370-374, July.
    6. Cathy Haag-Liautard & Mark Dorris & Xulio Maside & Steven Macaskill & Daniel L. Halligan & Brian Charlesworth & Peter D. Keightley, 2007. "Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila," Nature, Nature, vol. 445(7123), pages 82-85, January.
    7. Martin Steinegger & Johannes Söding, 2018. "Clustering huge protein sequence sets in linear time," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. Andreas Lange & Prajal H. Patel & Brennen Heames & Adam M. Damry & Thorsten Saenger & Colin J. Jackson & Geoffrey D. Findlay & Erich Bornberg-Bauer, 2021. "Structural and functional characterization of a putative de novo gene in Drosophila," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Joel Armstrong & Glenn Hickey & Mark Diekhans & Ian T. Fiddes & Adam M. Novak & Alden Deran & Qi Fang & Duo Xie & Shaohong Feng & Josefin Stiller & Diane Genereux & Jeremy Johnson & Voichita Dana Mari, 2020. "Progressive Cactus is a multiple-genome aligner for the thousand-genome era," Nature, Nature, vol. 587(7833), pages 246-251, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rujia Chen & Ning Xiao & Yue Lu & Tianyun Tao & Qianfeng Huang & Shuting Wang & Zhichao Wang & Mingli Chuan & Qing Bu & Zhou Lu & Hanyao Wang & Yanze Su & Yi Ji & Jianheng Ding & Ahmed Gharib & Huixin, 2023. "A de novo evolved gene contributes to rice grain shape difference between indica and japonica," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Ivan Koludarov & Tobias Senoner & Timothy N. W. Jackson & Daniel Dashevsky & Michael Heinzinger & Steven D. Aird & Burkhard Rost, 2023. "Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. David Moi & Shunsuke Nishio & Xiaohui Li & Clari Valansi & Mauricio Langleib & Nicolas G. Brukman & Kateryna Flyak & Christophe Dessimoz & Daniele de Sanctis & Kathryn Tunyasuvunakool & John Jumper & , 2022. "Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    15. Maciej K. Kocylowski & Hande Aypek & Wolfgang Bildl & Martin Helmstädter & Philipp Trachte & Bernhard Dumoulin & Sina Wittösch & Lukas Kühne & Ute Aukschun & Carolin Teetzen & Oliver Kretz & Botond Ga, 2022. "A slit-diaphragm-associated protein network for dynamic control of renal filtration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Michael A. Longo & Sunetra Roy & Yue Chen & Karl-Heinz Tomaszowski & Andrew S. Arvai & Jordan T. Pepper & Rebecca A. Boisvert & Selvi Kunnimalaiyaan & Caezanne Keshvani & David Schild & Albino Bacolla, 2023. "RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Leonardo Betancurt-Anzola & Markel Martínez-Carranza & Marc Delarue & Kelly M. Zatopek & Andrew F. Gardner & Ludovic Sauguet, 2023. "Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Karin Vogel & Tobias Bläske & Marie-Kristin Nagel & Christoph Globisch & Shane Maguire & Lorenz Mattes & Christian Gude & Michael Kovermann & Karin Hauser & Christine Peter & Erika Isono, 2022. "Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45028-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.