IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44521-3.html
   My bibliography  Save this article

VESPA: an optimized protocol for accurate metabarcoding-based characterization of vertebrate eukaryotic endosymbiont and parasite assemblages

Author

Listed:
  • Leah A. Owens

    (University of Wisconsin-Madison)

  • Sagan Friant

    (University of Wisconsin-Madison
    The Pennsylvania State University
    The Pennsylvania State University)

  • Bruno Martorelli Di Genova

    (University of Wisconsin-Madison
    The University of Vermont)

  • Laura J. Knoll

    (University of Wisconsin-Madison)

  • Monica Contreras

    (Venezuelan Institute of Scientific Research (IVIC))

  • Oscar Noya-Alarcon

    (Centro Amazónico de Investigación y Control de Enfermedades Tropicales-CAICET)

  • Maria G. Dominguez-Bello

    (Rutgers University–New Brunswick
    Rutgers University
    Rutgers University
    Canadian Institute for Advanced Research (CIFAR))

  • Tony L. Goldberg

    (University of Wisconsin-Madison)

Abstract

Protocols for characterizing taxonomic assemblages by deep sequencing of short DNA barcode regions (metabarcoding) have revolutionized our understanding of microbial communities and are standardized for bacteria, archaea, and fungi. Unfortunately, comparable methods for host-associated eukaryotes have lagged due to technical challenges. Despite 54 published studies, issues remain with primer complementarity, off-target amplification, and lack of external validation. Here, we present VESPA (Vertebrate Eukaryotic endoSymbiont and Parasite Analysis) primers and optimized metabarcoding protocol for host-associated eukaryotic community analysis. Using in silico prediction, panel PCR, engineered mock community standards, and clinical samples, we demonstrate VESPA to be more effective at resolving host-associated eukaryotic assemblages than previously published methods and to minimize off-target amplification. When applied to human and non-human primate samples, VESPA enables reconstruction of host-associated eukaryotic endosymbiont communities more accurately and at finer taxonomic resolution than microscopy. VESPA has the potential to advance basic and translational science on vertebrate eukaryotic endosymbiont communities, similar to achievements made for bacterial, archaeal, and fungal microbiomes.

Suggested Citation

  • Leah A. Owens & Sagan Friant & Bruno Martorelli Di Genova & Laura J. Knoll & Monica Contreras & Oscar Noya-Alarcon & Maria G. Dominguez-Bello & Tony L. Goldberg, 2024. "VESPA: an optimized protocol for accurate metabarcoding-based characterization of vertebrate eukaryotic endosymbiont and parasite assemblages," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44521-3
    DOI: 10.1038/s41467-023-44521-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44521-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44521-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manuel Kleiner & Erin Thorson & Christine E. Sharp & Xiaoli Dong & Dan Liu & Carmen Li & Marc Strous, 2017. "Assessing species biomass contributions in microbial communities via metaproteomics," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ray Sajulga & Caleb Easterly & Michael Riffle & Bart Mesuere & Thilo Muth & Subina Mehta & Praveen Kumar & James Johnson & Bjoern Andreas Gruening & Henning Schiebenhoefer & Carolin A Kolmeder & Steph, 2020. "Survey of metaproteomics software tools for functional microbiome analysis," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    2. Leyuan Li & Tong Wang & Zhibin Ning & Xu Zhang & James Butcher & Joeselle M. Serrana & Caitlin M. A. Simopoulos & Janice Mayne & Alain Stintzi & David R. Mack & Yang-Yu Liu & Daniel Figeys, 2023. "Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44521-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.