IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42968-y.html
   My bibliography  Save this article

Selective plasticity of fast and slow excitatory synapses on somatostatin interneurons in adult visual cortex

Author

Listed:
  • Bryce D. Grier

    (Johns Hopkins School of Medicine
    Johns Hopkins University
    Bionic Sight)

  • Samuel Parkins

    (Johns Hopkins University
    Johns Hopkins University)

  • Jarra Omar

    (Johns Hopkins University)

  • Hey-Kyoung Lee

    (Johns Hopkins School of Medicine
    Johns Hopkins University
    Johns Hopkins University
    Johns Hopkins University)

Abstract

Somatostatin-positive (SOM) interneurons are integral for shaping cortical processing and their dynamic recruitment is likely necessary for adaptation to sensory experience and contextual information. We found that excitatory synapses on SOMs in layer 2/3 (L2/3) of primary visual cortex (V1) of mice can be categorized into fast (F)- and slow (S)-Types based on the kinetics of the AMPA receptor-mediated current. Each SOM contains both types of synapses in varying proportions. The majority of local pyramidal neurons (PCs) make unitary connections with SOMs using both types, followed by those utilizing only S-Type, and a minority with only F-Type. Sensory experience differentially regulates synapses on SOMs, such that local F-Type synapses change with visual deprivation and S-Type synapses undergo plasticity with crossmodal auditory deprivation. Our results demonstrate that the two types of excitatory synapses add richness to the SOM circuit recruitment and undergo selective plasticity enabling dynamic adaptation of the adult V1.

Suggested Citation

  • Bryce D. Grier & Samuel Parkins & Jarra Omar & Hey-Kyoung Lee, 2023. "Selective plasticity of fast and slow excitatory synapses on somatostatin interneurons in adult visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42968-y
    DOI: 10.1038/s41467-023-42968-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42968-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42968-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hillel Adesnik & William Bruns & Hiroki Taniguchi & Z. Josh Huang & Massimo Scanziani, 2012. "A neural circuit for spatial summation in visual cortex," Nature, Nature, vol. 490(7419), pages 226-231, October.
    2. Andreas J. Keller & Morgane M. Roth & Massimo Scanziani, 2020. "Feedback generates a second receptive field in neurons of the visual cortex," Nature, Nature, vol. 582(7813), pages 545-549, June.
    3. P. M. Hartigan, 1985. "Computation of the Dip Statistic to Test for Unimodality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(3), pages 320-325, November.
    4. Karen L. Montey & Elizabeth M. Quinlan, 2011. "Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    5. Nathan R. Wilson & Caroline A. Runyan & Forea L. Wang & Mriganka Sur, 2012. "Division and subtraction by distinct cortical inhibitory networks in vivo," Nature, Nature, vol. 488(7411), pages 343-348, August.
    6. Courtney E. Yaeger & Dario L. Ringach & Joshua T. Trachtenberg, 2019. "Neuromodulatory control of localized dendritic spiking in critical period cortex," Nature, Nature, vol. 567(7746), pages 100-104, March.
    7. Sandra J. Kuhlman & Nicholas D. Olivas & Elaine Tring & Taruna Ikrar & Xiangmin Xu & Joshua T. Trachtenberg, 2013. "A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex," Nature, Nature, vol. 501(7468), pages 543-546, September.
    8. Yingjie Zhu & Wenhui Qiao & Kefei Liu & Huiyuan Zhong & Haishan Yao, 2015. "Control of response reliability by parvalbumin-expressing interneurons in visual cortex," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manoj Kumar & Gregory Handy & Stylianos Kouvaros & Yanjun Zhao & Lovisa Ljungqvist Brinson & Eric Wei & Brandon Bizup & Brent Doiron & Thanos Tzounopoulos, 2023. "Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    2. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    4. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    5. Deversi, Marvin & Ispano, Alessandro & Schwardmann, Peter, 2021. "Spin doctors: An experiment on vague disclosure," European Economic Review, Elsevier, vol. 139(C).
    6. Joshua H Goldwyn & Bradley R Slabe & Joseph B Travers & David Terman, 2018. "Gain control with A-type potassium current: IA as a switch between divisive and subtractive inhibition," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-23, July.
    7. Thomas Miconi & Rufin VanRullen, 2016. "A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    8. Graham Elliott & Nikolay Kudrin & Kaspar Wüthrich, 2022. "Detecting p‐Hacking," Econometrica, Econometric Society, vol. 90(2), pages 887-906, March.
    9. Utz Weitzel & Michael Kirchler, 2022. "The Banker's Oath And Financial Advice," Working Papers 2022-13, Faculty of Economics and Statistics, Universität Innsbruck.
    10. Suren Basov & Svetlana Danilkina & David Prentice, 2020. "When Does Variety Increase with Quality?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(3), pages 463-487, May.
    11. Beth Fairfield & Ettore Ambrosini & Nicola Mammarella & Maria Montefinese, 2017. "Affective Norms for Italian Words in Older Adults: Age Differences in Ratings of Valence, Arousal and Dominance," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-22, January.
    12. Donald R Cantrell & Jianhua Cang & John B Troy & Xiaorong Liu, 2010. "Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-16, October.
    13. Weitzel, Utz & Kirchler, Michael, 2023. "The Banker’s oath and financial advice," Journal of Banking & Finance, Elsevier, vol. 148(C).
    14. Cheng, Ming-Yen & Hall, Peter, 1998. "On mode testing and empirical approximations to distributions," Statistics & Probability Letters, Elsevier, vol. 39(3), pages 245-254, August.
    15. Jose Ameijeiras-Alonso & Rosa M. Crujeiras & Alberto Rodríguez-Casal, 2019. "Mode testing, critical bandwidth and excess mass," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 900-919, September.
    16. Tristan G. Heintz & Antonio J. Hinojosa & Sina E. Dominiak & Leon Lagnado, 2022. "Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Feng Zhu, 2005. "A nonparametric analysis of the shape dynamics of the US personal income distribution: 1962-2000," BIS Working Papers 184, Bank for International Settlements.
    18. James Flamino & Alessandro Galeazzi & Stuart Feldman & Michael W. Macy & Brendan Cross & Zhenkun Zhou & Matteo Serafino & Alexandre Bovet & Hernán A. Makse & Boleslaw K. Szymanski, 2023. "Political polarization of news media and influencers on Twitter in the 2016 and 2020 US presidential elections," Nature Human Behaviour, Nature, vol. 7(6), pages 904-916, June.
    19. Shehadeh, Karmel S. & Cohn, Amy E.M. & Jiang, Ruiwei, 2020. "A distributionally robust optimization approach for outpatient colonoscopy scheduling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 549-561.
    20. Jozef Barunik & Jiri Kukacka, 2015. "Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 959-973, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42968-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.