IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42795-1.html
   My bibliography  Save this article

Bioinspired thermadapt shape-memory polymer with light-induced reversible fluorescence for rewritable 2D/3D-encoding information carriers

Author

Listed:
  • Jinhui Huang

    (Southwest Jiaotong University
    Southwest Jiaotong University)

  • Yue Jiang

    (Southwest Jiaotong University
    Southwest Jiaotong University)

  • Qiuyu Chen

    (Southwest Jiaotong University
    Southwest Jiaotong University)

  • Hui Xie

    (Southwest Jiaotong University
    Southwest Jiaotong University)

  • Shaobing Zhou

    (Southwest Jiaotong University
    Southwest Jiaotong University)

Abstract

Fluorescent materials have attracted widespread attention for information encryption owing to their stimuli-responsive color-shifting. However, the 2D encoding of fluorescent images poses a risk of information leakage. Herein, inspired by the mimic octopus capable of camouflage by changing colors and shapes, we develop a thermadapt shape-memory fluorescent film (TSFF) for integrating 2D/3D encoding in one system. The TSFF is based on anthracene group with reversible photo-cross-linking and poly (ethylene-co-vinyl acetate) network with thermadapt shape-memory properties. The reversible photo-cross-linking of anthracene is accompanied by repeatable fluorescence-shifting and enables rewritable 2D encoding. Meanwhile, the thermadapt shape-memory properties not only enables the reconfiguration of the permanent shape for creating and erasing 3D patterns, i.e., rewritable 3D information, but also facilitates recoverable shape programming for 3D encoding. This rewritable 2D/3D encoding strategy can enhance information security because only designated inspectors can decode the information by providing sequential heating for shape recovery and UV exposure. Overall, TSFF capable of rewritable 2D/3D encoding will inspire the design of smart materials for high-security information carriers.

Suggested Citation

  • Jinhui Huang & Yue Jiang & Qiuyu Chen & Hui Xie & Shaobing Zhou, 2023. "Bioinspired thermadapt shape-memory polymer with light-induced reversible fluorescence for rewritable 2D/3D-encoding information carriers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42795-1
    DOI: 10.1038/s41467-023-42795-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42795-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42795-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuyue Guo & Peng Li & Jinzhan Zhong & Dandan Wen & Bingyan Wei & Sheng Liu & Shuxia Qi & Jianlin Zhao, 2022. "Stokes meta-hologram toward optical cryptography," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Inki Kim & Jaehyuck Jang & Gyeongtae Kim & Jihae Lee & Trevon Badloe & Jungho Mun & Junsuk Rho, 2021. "Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Zhao Gao & Yifei Han & Feng Wang, 2018. "Cooperative supramolecular polymers with anthracene‒endoperoxide photo-switching for fluorescent anti-counterfeiting," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Guogao Zhang & Wenjun Peng & Jingjun Wu & Qian Zhao & Tao Xie, 2018. "Digital coding of mechanical stress in a dynamic covalent shape memory polymer network," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirimhan, Destan, 2023. "Importance of anti-money laundering regulations among prosumers for a cybersecure decentralized finance," Journal of Business Research, Elsevier, vol. 157(C).
    2. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Fei Zhang & Yinghui Guo & Mingbo Pu & Lianwei Chen & Mingfeng Xu & Minghao Liao & Lanting Li & Xiong Li & Xiaoliang Ma & Xiangang Luo, 2023. "Meta-optics empowered vector visual cryptography for high security and rapid decryption," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Wei Yuan & Letian Chen & Chuting Yuan & Zidan Zhang & Xiaokai Chen & Xiaodong Zhang & Jingjing Guo & Cheng Qian & Zujin Zhao & Yanli Zhao, 2023. "Cooperative supramolecular polymerization of styrylpyrenes for color-dependent circularly polarized luminescence and photocycloaddition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Xuyue Guo & Peng Li & Jinzhan Zhong & Dandan Wen & Bingyan Wei & Sheng Liu & Shuxia Qi & Jianlin Zhao, 2022. "Stokes meta-hologram toward optical cryptography," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Pei-Nan Ni & Pan Fu & Pei-Pei Chen & Chen Xu & Yi-Yang Xie & Patrice Genevet, 2022. "Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Byoungsu Ko & Trevon Badloe & Younghwan Yang & Jeonghoon Park & Jaekyung Kim & Heonyeong Jeong & Chunghwan Jung & Junsuk Rho, 2022. "Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42795-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.